PRELIMINARY PRODUCT INFORMATION

MOS INTEGRATED CIRCUIT μ PD161831

240/244-OUTPUT TFT-LCD SOURCE DRIVER WITH TIMING GENERATOR (COMPATIBLE WITH 64-GRAY SCALES)

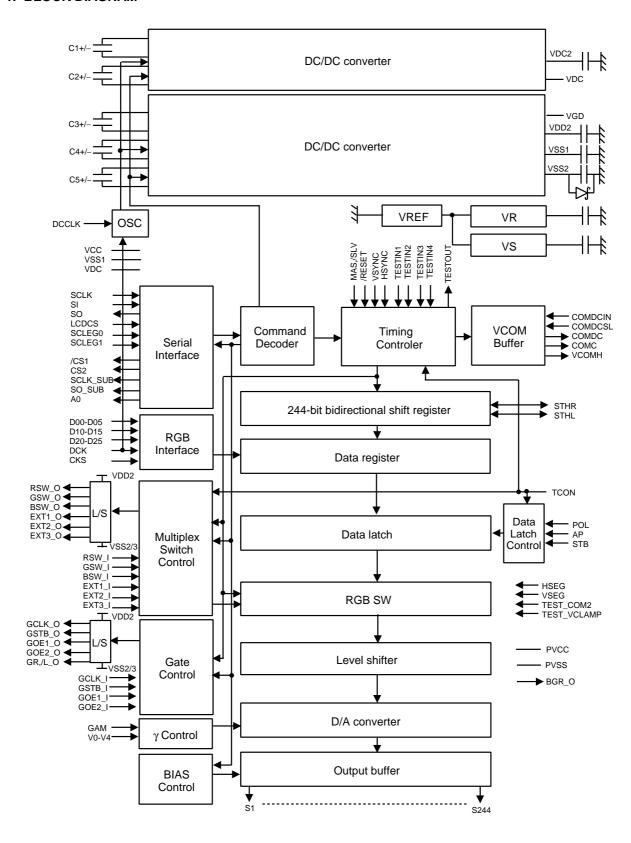
DESCRIPTION

The μ PD161831 is a source driver for LIPS TFTs with on-chip timing generator and featuring 240/244 outputs. Data input as 6-bit x 3-dot digital data is output as 64 γ -corrected values using an internal D/A converter, achieving 260,000-color (full-color) display.

FEATURES

- CMOS level input
- 240/244 outputs (R, G, B output)
- Input of 6 bits (gray-scale data) by 3 dots
- Capable of outputting 64 values by means of 5 external power modules and a D/A converter
- Output dynamic range: Vss + 0.05 V to Vs 0.05 V
- High-speed data transfer: fclk = 20 MHz MAX. (during 2-times data transfer when operating at Vcc = 2.5 V. During 1-time data transfer 10 MHz MAX.)
- High-speed data transfer: fclk = 16 MHz MAX. (during 2-times data transfer when operating at Vcc = 2.2 V. During 1-time data transfer 8 MHz MAX.)
- On-chip power supplies (driver power supply, gate top power supply, gate bottom power supply)
- Logic power supply voltage (Vcc): 2.2 to 3.6 V
- DC/DC reference power supply (VDC): 2.5 to 3.6 V
- On-chip timing generator (Outputs R, G, B switching signal to panel. Outputs gate control signal.)
- On-chip 8-bit serial interface (applied to SPI)

ORDERING INFORMATION


Part Number	Package
μPD161831P	Chip

Remark Purchasing the above chip entail the exchange of documents such as a separate memorandum or product quality, so please contact one of our sales representatives.

The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production.

Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

* 1. BLOCK DIAGRAM

Remark /xxx indicates active low signal.

2. PIN CONFIGURATION (Pad Layout)

Chip size: T.B.D.

Bump size: INPUT/VCOM/TEST/DUMMY: 50 x 75 μ m²

OUTPUT: 35 x 100 μ m²

Remark T.B.D.: To be determined.

Alignment Mark (Unit: μm)

		X Coordinate	Y Coordinate
Alignment1	Aluminum (core)	10768.0	441.0
	Bump (core)	10768.0	366.0
Alignment2	Aluminum (core)	-10768.0	441.0
	Bump (core)	-10768.0	366.0

Remark The figures are rounded off in 0.5 μ m units.

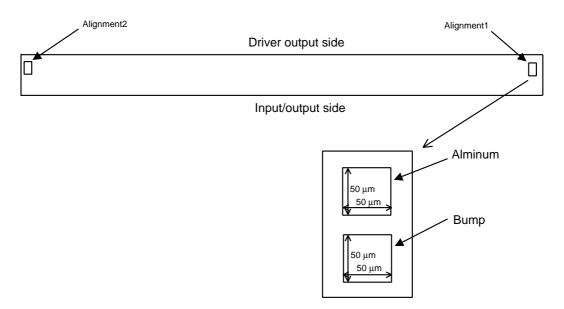


Table 2-1. Pad Layout (1/2)

No.	PAD Name	X [μm]	Υ [μm]	No.	PAD Name	X [μm]	Y [μm]	No.	PAD Name	X [μm]	Υ [μm]	No.	PAD Name	X [μm]	Υ [μm]
1	Dummy	10797.00	594.99	71	S178	5820.00	594.99	141	S108	1620.00	594.99	211	S38	-2580.00	594.99
2	Dummy	10737.00	594.99	72	S177	5760.00	594.99	142	S107	1560.00	594.99	212	S37	-2640.00	594.99
<u>3</u>	Dummy Dummy	10677.00 9840.00	594.99 594.99	73 74		5700.00 5640.00	594.99 594.99	143	S106 S105	1500.00 1440.00	594.99 594.99	213 214	S36 S35	-2700.00 -2760.00	594.99 594.99
5	S244	9780.00	594.99	75		5580.00	594.99	145	S103	1380.00	594.99	215	S34	-2820.00	594.99
6	S243	9720.00	594.99	76		5520.00	594.99	146	S103	1320.00	594.99	216		-2880.00	594.99
7	S242	9660.00	594.99	77	S172	5460.00	594.99	147	S102	1260.00	594.99	217	S32	-2940.00	594.99
8	S241	9600.00	594.99	78		5400.00	594.99	148	S101	1200.00	594.99	218		-3000.00	594.99
9	S240	9540.00	594.99	79		5340.00	594.99	149	S100	1140.00	594.99	219	S30	-3060.00	594.99
10	S239	9480.00	594.99	80		5280.00	594.99	150	S99	1080.00	594.99	220	S29	-3120.00	594.99
11 12	S238 S237	9420.00 9360.00	594.99 594.99	81 82	S168 S167	5220.00 5160.00	594.99 594.99	151 152	S98 S97	1020.00 960.00	594.99 594.99	221 222	S28 S27	-3180.00 -3240.00	594.99 594.99
13	S236	9300.00	594.99	83	S166	5100.00	594.99	153	S96	900.00	594.99	223	S26	-3300.00	594.99
14	S235	9240.00	594.99	84		5040.00	594.99	154	S95	840.00	594.99	224	S25	-3360.00	594.99
15	S234	9180.00	594.99	85		4980.00	594.99	155	S94	780.00	594.99	225	S24	-3420.00	594.99
16	S233	9120.00	594.99	86		4920.00	594.99	156	S93	720.00	594.99	226	S23	-3480.00	594.99
17	S232	9060.00	594.99	87	S162	4860.00	594.99	157	S92	660.00	594.99	227	S22	-3540.00	594.99
18 19	S231 S230	9000.00 8940.00	594.99 594.99	88 89		4800.00 4740.00	594.99 594.99	158 159	S91 S90	600.00 540.00	594.99 594.99	228 229	S21 S20	-3600.00 -3660.00	594.99 594.99
20	S229	8880.00	594.99	90	S159	4680.00	594.99	160	S89	480.00	594.99	230	S19	-3720.00	594.99
21	S228	8820.00	594.99	91	S158	4620.00	594.99	161	S88	420.00	594.99	231	S18	-3780.00	594.99
22	S227	8760.00	594.99	92	S157	4560.00	594.99	162	S87	360.00	594.99	232	S17	-3840.00	594.99
23	S226	8700.00	594.99	93	S156	4500.00	594.99	163	S86	300.00	594.99	233	S16	-3900.00	594.99
24	S225	8640.00	594.99	94		4440.00	594.99	164	S85	240.00	594.99	234	S15	-3960.00	594.99
25 26	S224 S223	8580.00 8520.00	594.99 594.99	95 96		4380.00 4320.00	594.99 594.99	165 166	S84 S83	180.00 120.00	594.99 594.99	235 236	S14 S13	-4020.00 -4080.00	594.99 594.99
27	S222	8460.00	594.99	97	S152	4260.00	594.99	167	S82	60.00	594.99	237	S12	-4140.00	594.99
28	S221	8400.00	594.99	98		4200.00	594.99	168	S81	0.00	594.99	238	S11	-4200.00	594.99
29	S220	8340.00	594.99	99	S150	4140.00	594.99	169	S80	-60.00	594.99	239		-4260.00	594.99
30	S219	8280.00	594.99	100	S149	4080.00	594.99	170	S79	-120.00	594.99	240	S9	-4320.00	594.99
31	S218	8220.00	594.99	101	S148	4020.00	594.99	171 172	S78	-180.00	594.99	241	S8	-4380.00	594.99
32	S217 S216	8160.00 8100.00	594.99 594.99	102	S147 S146	3960.00 3900.00	594.99 594.99	173	S77 S76	-240.00 -300.00	594.99 594.99	242 243	S7 S6	-4440.00 -4500.00	594.99 594.99
34	S215	8040.00	594.99	103	S145	3840.00	594.99	174	S75	-360.00	594.99	244	S5	-4560.00	594.99
35	S214	7980.00	594.99	105	S144	3780.00	594.99	175	S74	-420.00	594.99	245		-4620.00	594.99
36	S213	7920.00	594.99	106		3720.00	594.99	176	S73	-480.00	594.99	246		-4680.00	594.99
37	S212	7860.00	594.99	107	S142	3660.00	594.99	177	S72	-540.00	594.99	247	S2	-4740.00	594.99
38 39	S211 S210	7800.00 7740.00	594.99 594.99	108 109	S141 S140	3600.00 3540.00	594.99 594.99	178 179	S71 S70	-600.00 -660.00	594.99 594.99	248 249	S1 Dummy	-4800.00 -4860.00	594.99 594.99
40	S210	7680.00	594.99	110	S139	3480.00	594.99	180	S69	-720.00	594.99	250	Dummy	-4920.00	594.99
41	S208	7620.00	594.99	111	S138	3420.00	594.99	181	S68	-780.00	594.99	251	Dummy	-4980.00	594.99
42	S207	7560.00	594.99	112	S137	3360.00	594.99	182	S67	-840.00	594.99	252	Dummy	-5040.00	594.99
43	S206	7500.00	594.99	113		3300.00	594.99	183	S66	-900.00	594.99	253	Dummy	-5100.00	594.99
44	S205	7440.00	594.99	114	S135	3240.00	594.99	184	S65	-960.00	594.99	254	Dummy	-5160.00	594.99
45 46	S204 S203	7380.00 7320.00	594.99 594.99	115 116		3180.00 3120.00	594.99 594.99	185 186	S64 S63	-1020.00 -1080.00	594.99 594.99	255 256	Dummy Dummy	-5220.00 -5280.00	594.99 594.99
47	S202	7260.00	594.99	117	S132	3060.00	594.99	187	S62	-1140.00	594.99	257	Dummy	-5340.00	594.99
48	S201	7200.00	594.99	118		3000.00	594.99	188	S61	-1200.00	594.99	258	Dummy	-5400.00	594.99
49	S200	7140.00	594.99	119		2940.00	594.99	189	S60	-1260.00	594.99	259	Dummy	-5460.00	594.99
50	S199	7080.00	594.99	120	S129	2880.00	594.99	190	S59	-1320.00	594.99	260	Dummy	-5520.00	594.99
51 52	S198 S197	7020.00 6960.00	594.99 594.99	121 122	S128 S127	2820.00 2760.00	594.99 594.99	191 192	S58 S57	-1380.00 -1440.00	594.99 594.99	261 262	Dummy Dummy	-5580.00 -5640.00	594.99 594.99
53	S197 S196	6900.00	594.99	123	S127 S126	2700.00	594.99	192	S56	-1440.00	594.99	262	Dummy	-5700.00	594.99
54	S195	6840.00	594.99	124		2640.00	594.99	194	S55	-1560.00	594.99	264	Dummy	-5760.00	594.99
55	S194	6780.00	594.99	125	S124	2580.00	594.99	195	S54	-1620.00	594.99	265	Dummy	-5820.00	594.99
56	S193	6720.00	594.99	126		2520.00	594.99	196	S53	-1680.00	594.99	266		-5880.00	594.99
57	S192	6660.00	594.99	127	S122	2460.00	594.99	197	S52	-1740.00	594.99	267	Dummy	-5940.00	594.99
58 59	S191 S190	6600.00 6540.00	594.99 594.99	128 129		2400.00 2340.00	594.99 594.99	198 199	S51 S50	-1800.00 -1860.00	594.99 594.99	268 269		-6000.00 -6060.00	594.99 594.99
60	S189	6480.00	594.99	130		2280.00	594.99	200	S49	-1920.00	594.99	270		-6120.00	594.99
61	S188	6420.00	594.99	131	S118	2220.00	594.99	201	S48	-1980.00	594.99	271	Dummy	-6180.00	594.99
62	S187	6360.00	594.99	132	S117	2160.00	594.99	202	S47	-2040.00	594.99	272		-6240.00	594.99
63	S186	6300.00	594.99	133		2100.00	594.99	203	S46	-2100.00	594.99	273		-6300.00	594.99
64	S185	6240.00	594.99	134		2040.00	594.99	204	S45	-2160.00	594.99	274		-6360.00	594.99
65 66	S184 S183	6180.00 6120.00	594.99 594.99	135 136	S114 S113	1980.00 1920.00	594.99 594.99	205 206	S44 S43	-2220.00 -2280.00	594.99 594.99	275 276		-6420.00 -6480.00	594.99 594.99
67	S182	6060.00	594.99	137	S113	1860.00	594.99	207	S42	-2340.00	594.99	277		-6540.00	594.99
68	S181	6000.00	594.99	138		1800.00	594.99	208	S41	-2400.00	594.99	278		-6600.00	594.99
69	S180	5940.00	594.99	139	S110	1740.00	594.99	209	S40	-2460.00	594.99	279	Dummy	-6660.00	594.99
70	S179	5880.00	594.99	140	S109	1680.00	594.99	210	S39	-2520.00	594.99	280	Dummy	-6720.00	594.99
_	<u></u>		_	_				·				_	·		

 μ PD161831

Table 2-1. Pad Layout (2/2)

No.	PAD Name	X[µm]	Y[μm]
281	Dummy	-6780.00	594.99
282	Dummy	-6840.00	594.99
283	BSW_O	-6900.00	594.99
284	BSW_O	-6960.00	594.99
285	GSW_O	-7080.00	594.99
286	GSW_O	-7140.00	594.99
287	RSW_O	-7260.00	594.99
288	RSW_O	-7320.00	594.99
289	EXT3_O	-7440.00	594.99
290	EXT3_O	-7500.00	594.99
291	EXT2_O	-7620.00	594.99
292	EXT2_O	-7680.00	594.99
293	EXT1_O	-7800.00	594.99
294	EXT1_O	-7860.00	594.99
295	VSS2	-7980.00	594.99
296	VSS2	-8040.00	594.99
297	VSS2	-8100.00	594.99
298	VSS2	-8160.00	594.99
299	VSS1	-8280.00	594.99
300	VSS1	-8340.00	594.99
301	VSS1	-8400.00	594.99
302	VSS1	-8460.00	594.99
303	VDD2	-8580.00	594.99
304	VDD2	-8640.00	594.99
305	VDD2	-8700.00	594.99
306	VDD2	-8760.00	594.99
307	G0E2_0	-8880.00	594.99
308	G0E2_0	-8940.00	594.99
309	G0E2_0	-9000.00	594.99
310	G0E2_0	-9060.00	594.99
311	G0E1_0	-9180.00	594.99
312	G0E1_0	-9240.00	594.99
313	GR/L_O	-9360.00	594.99
314	GR/L_O	-9420.00	594.99
315	GCLK_O	-9540.00	594.99
316	GCLK_O	-9600.00	594.99
317	GSTB_O	-9720.00	594.99
318	GSTB_O	-9780.00	594.99
319	Dummy	-9840.00	594.99
320	Dummy	-10677.00	594.99
321	Dummy	-10737.00	594.99
322	Dummy	-10797.00	594.99
323	Dummy	-10788.00	-607.50
324	Dummy	-10688.01	-607.50
325	Dummy	-10588.02	-607.50
326	Dummy	-9879.99	-607.50
327	VSS	-9780.00	-607.50
328	VSS	-9705.00	-607.50
329	VSS	-9630.00	-607.50
330	VSS	-9555.00	-607.50
331	VSS	-9480.00	-607.50
332	VS	-9380.01	-607.50
333	VS	-9305.01	-607.50
334	VS	-9230.01	-607.50
335	VS	-9155.01	-607.50
336	VS	-9080.01	-607.50
337	VGD	-8980.02	-607.50
338	VGD	-8905.02	-607.50
339	VGD	-8830.02	-607.50
340	VGD	-8755.02	-607.50
341	VR	-8655.03	-607.50
342	VR	-8580.03	-607.50
343	VR	-8505.03	-607.50
	VR	-8430.03	-607.50
344			-607.50
	VDC	-8330.04	0000
344		-8330.04 -8255.04	-607.50
344 345	VDC		
344 345 346	VDC VDC VDC VDC	-8255.04	-607.50
344 345 346 347	VDC VDC VDC	-8255.04 -8180.04	-607.50 -607.50

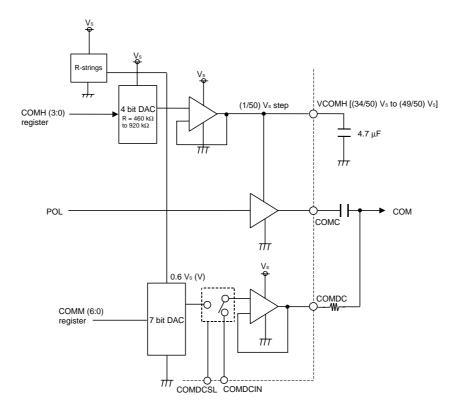
		iabi	e 2–1. P
No.	PAD Name	X[µm]	Y[µm]
351	VDC	-7880.04	-607.50
352	VDC2	-7780.05	-607.50
353	VDC2	-7705.05	-607.50
354	VDC2	-7630.05	-607.50
355	VDC2	-7555.05	-607.50
356	VDC2	-7480.05	-607.50
357	VDC2	-7405.05	-607.50
358	VDC2	-7330.05	-607.50
359	C1+	-7230.06	-607.50
360	C1+	-7155.06	-607.50
361	C1+	-7080.06	-607.50
362	C1+	-7005.06	-607.50
363	C1+	-6930.06	-607.50
364	C1+	-6855.06	-607.50
365	C1+	-6780.06	-607.50
366	C1-	-6680.07	-607.50
367	C1-	-6605.07	-607.50
368	C1-	-6530.07	-607.50
369	C1-	-6455.07	-607.50
370	C1-	-6380.07	-607.50
371	C1-	-6305.07	-607.50
372	C1- C1-	-6230.07	-607.50
373	C1- C2+	-6230.07 -6130.08	-607.50
374	C2+	-6055.08	-607.50
375	C2+	-5980.08	-607.50
376	C2+	-5905.08	-607.50
-		-5830.08	-607.50
377 378	C2+ C2+	-5755.08	-607.50
379	C2+	-5680.08	-607.50
380	C2-	-5580.09	-607.50
381	C2-	-5505.09	-607.50
	_		
382	C2- C2-	-5430.09	-607.50
383	C2-	-5355.09	-607.50
384		-5280.09	-607.50
385	C2- ~	-5205.09	-607.50
386	C2-	-5130.09	-607.50
387	C3+	-5030.10	-607.50
388	C3+	-4955.10	-607.50
389	C3+	-4880.10	-607.50
390	<u>ය</u>	-4780.11	-607.50
391	<u>ය</u>	-4705.11	-607.50
392	<u>ය</u>	-4630.11	-607.50
393	C4+	-4530.12	-607.50
394	C4+	-4455.12	-607.50
395	C4+	-4380.12	-607.50
396	C4-	-4280.13	-607.50
397	C4-	-4205.13	-607.50
398	C4-	-4130.13	-607.50
399	C5+	-4030.14	-607.50
400	C5+	-3955.14	-607.50
401	C5+	-3880.14	-607.50
402	C5-	-3780.15	-607.50
403	C5-	-3705.15	-607.50
404	C5-	-3630.15	-607.50
405	DOOLK	-3530.16	-607.50
406	VDD2	-3430.17	-607.50
407	VDD2	-3355.17	-607.50
408	VSS1	-3255.18	-607.50
409	VSS1	-3180.18	-607.50
410	VSS2	-3080.19	-607.50
411	VSS2	-3005.19	-607.50
412	TEST_VOLAMP	-2905.20	-607.50
413	TEST_VOLAMP	-2830.20	-607.50
414	TEST_COM2	-2730.21	-607.50
415	TEST_COM2	-2655.21	-607.50
416	BGR_O	-2555.22	-607.50
417	MVS	-2455.23	-607.50
418	MVS	-2380.23	-607.50
419	Dummy	-2280.24	-607.50
420	Dummy	-2180.25	-607.50
	-aniny	2100.20	wi.30

No.	PAD Name	X[µm]	Y[µm]
421	Dummy	-2080.26	-607.50
422	Dummy	-1980.27	-607.50
423	Dummy	-1880.28	-607.50
424	Dummy	-1780.29	-607.50
425 426	Dummy	-1680.30	-607.50
_	Dummy	-1580.31 -1480.32	-607.50
427 428	VCC		-607.50
428	VCC	-1405.32 -1330.32	-607.50 -607.50
430	VCC	-1255.32	-607.50
431	VSS	-1155.33	-607.50
432	VSS	-1080.33	-607.50
433	VSS	-1005.33	-607.50
434	VSS	-930.33	-607.50
435	VSS	-855.33	-607.50
436	STHR	-755.34	-607.50
437	GOE2 I	-655.35	-607.50
438	GOE1 I	-555.36	-607.50
439	GSTB I	-455.37	-607.50
440	GCLK_I	-355.38	-607.50
441	STB	-255.39	-607.50
442	AP	-155.40	-607.50
443	POL	-55.41	-607.50
444	TCON	44.58	-607.50
445	PVCC	144.57	-607.50
446	OSEL	244.56	-607.50
447	VCSEL	344.55	-607.50
448	GAM	444.54	-607.50
449	MAS/SLV	544.53	-607.50
450	SCLEG1	644.52	-607.50
451	SCLEG0	744.51	-607.50
452	CKS	844.50	-607.50
453	HSEG	944.49	-607.50
454	VSEG	1044.48	-607.50
455	PVSS	1144.47	-607.50
456	EXT3_I	1244.46	-607.50
457	EXT2_I	1344.45	-607.50
458	EXT1_I	1444.44	-607.50
459	BSW_I	1544.43	-607.50
460	GSW_I	1644.42	-607.50
461 462	RSW_I	1744.41 1844.40	-607.50
463	Dummy	1944.39	-607.50 -607.50
464	Dummy Dummy	2044.38	-607.50
465	Dummy	2144.37	-607.50
466	Durmy	2244.36	-607.50
467	/RESET	2344.35	-607.50
468	A0	2444.34	-607.50
469	CS2	2544.33	-607.50
470	CS1	2644.32	-607.50
471	SCLK_SUB	2744.31	-607.50
472	SOSUB	2844.30	-607.50
473	LCDCS	2944.29	-607.50
474	LCDCS	3019.29	-607.50
475	SCLK	3119.28	-607.50
476	SCLK	3194.28	-607.50
477	SI	3294.27	-607.50
478	SI	3369.27	-607.50
479	SO	3469.26	-607.50
480	\$0	3544.26	-607.50
481	VSYNC	3644.25	-607.50
482	HSYNC	3744.24	-607.50
483	HSYNC	3819.24	-607.50
484	DOK	3919.23	-607.50
485	DOK	3994.23	-607.50
486	Dummy	4094.22	-607.50
487	Dummy	4194.21	-607.50
488	Dummy	4294.20	-607.50
	Dummy	4394.19	-607.50
489 490			-607.50

No.	PAD Name	X[µm]	Y[µm]
491	D25	4594.17	-607.50
492	D23	4694.16	-607.50
493	D23	4794.15	-607.50
494	D22	4894.14	-607.50
495	D21	4994.13	-607.50
496	D20	5094.12	-607.50
497	D15	5194.11	-607.50
498	D14	5294.10	-607.50
499	D13	5394.09	-607.50
500	D12	5494.08	-607.50
501	D11	5594.07	-607.50
502	D10	5694.06	-607.50
503	D05	5794.05	-607.50
504	D04	5894.04	-607.50
505	D03	5994.03	-607.50
506	D02	6094.02	-607.50
507	D01	6194.01	-607.50
508	D00	6294.00	-607.50
509	STHL	6393.99	-607.50
510	STHL	6468.99	-607.50
511	TESTOUT	6568.98	-607.50
512	TESTINA TESTINA	6668.97 6768.96	-607.50 -607.50
513 514		6868.95	-607.50
515	TESTIN2 TESTINI	6968.94	-607.50
516	V4	7068.93	-607.50
517	V4 V4	7143.93	-607.50
518	V3	7243.92	-607.50
519	V3	7318.92	-607.50
520	V2	7418.91	-607.50
521	V2	7493.91	-607.50
522	V1	7593.90	-607.50
523	V1	7668.90	-607.50
524	V0	7768.89	-607.50
525	V0	7843.89	-607.50
526	Dummy	7943.88	-607.50
527	Dummy	8043.87	-607.50
528	Dummy	8143.86	-607.50
529	Dummy	8243.85	-607.50
530	Dummy	8343.84	-607.50
531	Dummy	8443.83	-607.50
532	Dummy COMDCSL	8543.82	-607.50
533		8643.81	-607.50
534 535	COMPON	8743.80 8818.80	-607.50 -607.50
536	VCOMH	8918.79	-607.50
537	VCOMH	8993.79	-607.50
538	VCOMH	9068.79	-607.50
539	VCOMH	9143.79	-607.50
540	COMDC	9243.78	-607.50
541	COMDC	9318.78	-607.50
542	COMC	9418.77	-607.50
543	COMC	9493.77	-607.50
544	COMC	9568.77	-607.50
545	COMC	9643.77	-607.50
546	COMC	9718.77	-607.50
547	Dummy	9818.76	-607.50
548	Dummy	10588.02	-607.50
549	Dummy	10688.01	-607.50
550	Dummy	10788.00	-607.50

3. PIN FUNCTIONS

3.1 Source Driver Control Pins


(1/2)

Pin Symbol	Pin Name	Pin Number	I/O	Description
S ₁ to S ₂₄₄	Driver output	248 to 5	Output	The D/A converted 64-gray-scale analog voltage is output.
				OSEL = L: S1 to S244
				OSEL = H: S ₃ to S ₂₄₂
OSEL	Driver output count	446	Input	The output count can be selected. When OSEL = H, the unused
	switching			pins S ₁ , S ₂ , S ₂₄₃ , S ₂₄₄ always become Hi-Z (high impedance).
				OSEL = L: 244 outputs
				OSEL = H: 240 outputs
DCK	Dot clock	484, 485	Input	Dot clock signal
CKS	Dot clock inversion	452	Input	Inverts the active level of the dot clock.
				CKS = L: Low active
				CKS = H: High active
HSYNC	Horizontal sync signal	482, 483	Input	Horizontal sync signal input pin.
				Do not input a width wider than the horizontal period as the width of
				the HSYNC active level.
VSYNC	Vertical sync signal	481	Input	Vertical sync signal input pin.
HSEG	HSYNC polarity selection	453	Input	Selects the active level of the HSYNC signal.
				HSEG = L: Low active
				HSEG = H: High active
VSEG	VSYNC polarity selection	454	Input	Selects the active level of the VSYNC signal.
				VSEG = L: Low active
				VSEG = H: High active
D ₀₀ to D ₀₅	Display data input	508 to 503	Input	The display data is input with a width of 18 bits, the gray scale data
D ₁₀ to D ₁₅		502 to 497		(6 bits) by 3 dots (1 pixels).
D ₂₀ to D ₂₅		496 to 491		Dxo: LSB, Dxs: MSB
SCLK	Serial clock input	475, 476	Input	Clock pin of serial interface.
SO	Serial data output	479, 480	Output	Data output pin of serial interface.
SI	Serial data input	477, 478	Input	Data input pin of serial interface.
LCDCS	Serial interface chip select	473, 474	Input	Chip select pin of serial interface.
SCLEG0,	Serial clock mode	451,	Input	Mode select pin of serial clock. For details, refer to 4. REGISTERS
SCLEG1	selection	450		for explanation in serial interface .
VCSEL	COM amplitude output	447	Input	Fixes the VCOM output to L. When not using the VCOM output,
	fixing signal			set VCSEL to L.
				VCSEL = L: VCOM output fixed to L
				VCSEL = H: VCOM signal output in accordance with POL signal
GAM	External γ -usage selection	448	Input	When the γ -correction power supply is input externally, switch
				GAM to H. If two or more chips are used, be sure to input the γ -
				correction power supply externally.
				Figure 3–1 shows VCOM application example.
				GAM = L: External γ -correction power supply not input
				GAM = H: External γ -correction power supply input

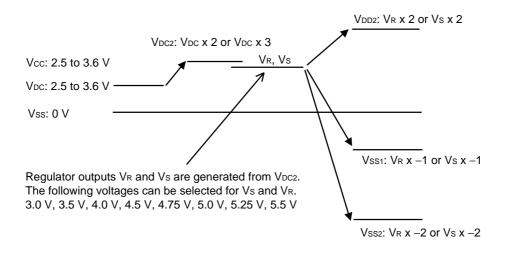
(2/2)

Pin Symbol	Pin Name	Pin Name	I/O	Description
MAS, /SLV	Master slave control	449	Input	When the timing generator is used and 2 chips are connected in cascade, selects use either as master IC or slave IC. When the timing generator is not used, either leave this pin or input a high level. MAS, /SLV = L: Use as slave MAS, /SLV = H: Use as master
V ₀ -V ₄	γ -corrected power supplies	525 to 516	Input	These pins input the γ -corrected power supplies from outside, the relationship below must be observed. Also, be sure to stabilize the gray-scale-level power supply during gray-scale voltage output. $V_{SS} \leq V_4 \leq V_3 \leq V_2 \leq V_1 \leq V_0 \leq V_S$
VCOMH	Amplitude voltage	536 to 539	Output	Outputs the voltage set with the amplitude voltage adjustment D/A converter.
COMC	Square wave signal output	542 to 546	Output	Outputs the square wave signal obtained through common modulation of V _{P-P} voltage 0 V-VCOMH.
COMDC	Common center voltage output	540, 541	Output	Outputs the common center voltage.
COMDCIN	Common center voltage external input	534, 535	Input	Input pin used to input the common center voltage from external. Valid when COMDCSL = H.
COMDCSL	Common center voltage external input switch	533	Input	Inputs a H level as the common voltage when the voltage input from the COMDCIN pin is used.
TCON	Timing generator use/non-use selection	444	Input	This pin is used to select whether or not to use the timing generator. TCON = L: Timing generator used TCON = H: Timing generator not used
/RESET	Reset	467	Input	Reset pin. This is the active low signal.

Figure 3–1. VCOM Application Example

3.2 Gate Scan Control Pins

Pin Symbol	Pin Name	Pin Name	I/O	Description
GCLK_O	Gate CLK output	315, 316	Output	Pin for CLK output to the gate control circuit.
GSTB_O	Gate STB output	317, 318	Output	Pin for strobe signal fed to gate control circuit
GOE1_O	Gate OE1 output	311, 312	Output	Pin for OE1 output to gate control circuit
GOE2_O	Gate OE2 output	307 to 310	Output	Pin for OE2 output to gate control circuit
GCLK_I	Gate CLK input	440	Input	Input the CLK signal to the gate control circuit, when the timing generator function is not used. The signal input to this pin is output from the GCLK_O via a level shifter.
GSTB_I	Gate STB input	439	Input	Input the STB signal to the gate control circuit, when the timing generator function is not used. The signal input to this pin is output from the GSTB_O via a level shifter.
GOE1_I	Gate OE1 input	438	Input	Input the OE1 signal to the gate control circuit, when the timing generator function is not used. The signal input to this pin is output from the GOE1_O via a level shifter.
GOE2_I	Gate OE2 input	437	Input	Input the OE2 signal to the gate control circuit, when the timing generator function is not used. The signal input to this pin is output from the GOE2_O via a level shifter.
GR,/L_O	Gate R,/L output	313, 314	Output	Pin that outputs R,/L to the gate control circuit.


3.3 Control Pin for Multiplex Switch, etc.

Pin Symbol	Pin Name	Pin Name	I/O	Description
RSW_O	Multiplex control	287, 288	Output	Output pin that controls the multiplex switch on the panel.
GSW_O	signal output	285, 286	Output	
BSW_O		283, 284	Output	
EXT1_O	Extension control	293, 294	Output	Extension output pin that controls the circuit on the panel.
EXT2_O	signal output	291, 292	Output	
EXT3_O		289, 290	Output	
RSW_I	Multiplex control	461	Input	Pin for inputting the signal that controls the multiplex switch on the panel,
	signal input			when the timing generator function is not used. The signal input to this pin
				is output from the RSW_O pin via a level shifter.
GSW_I		460	Input	Pin for inputting the signal that controls the multiplex switch on the panel,
				when the timing generator function is not used. The signal input to this pin
				is output from the GSW_O pin via a level shifter.
BSW_I		459	Input	Pin for inputting the signal that controls the multiplex switch on the panel,
				when the timing generator function is not used. The signal input to this pin
				is output from the BSW_O pin via a level shifter.
EXT1_I	Extension control	458	Input	Pin for inputting the extension signal that controls the circuit on the panel,
	signal input			when the timing generator function is not used. The signal input to this pin
				is output from the EXT1_O pin via the level shifter.
EXT2_I		457	Input	Pin for inputting the extension signal that controls the circuit on the panel,
				when the timing generator function is not used. The signal input to this pin
				is output from the EXT2_O pin via the level shifter.
EXT3_I		456	Input	Pin for inputting the extension signal that controls the circuit on the panel,
				when the timing generator function is not used. The signal input to this pin
				is output from the EXT3_O pin via the level shifter.

3.4 Power Supply Function Control Pin

Pin Symbol Pin Name Pin Name I/O Description C1+/-.C2+/-. Booster capacitor 359 to 404 Connect the boost capacitor of the DC/DC converter to this pin. C3+/-,C4+/-, connection Booster ratio is difference on the way of using condenser connection. C5+/-For details, refer to figure 3-3. V_{DC2} DC/DC converter 352 to 358 DC/DC converter boost output (VDC x 2 or VDC x 3). This output is the Vs and output VR amplifier power supply. The VDC2 boot step is selected with the VCD2 bit. V_{CD2} bit = 0: V_{DC} x 2 V_{CD2} bit = 1: V_{DC} x 3 ۷s Source power 336 to 332 Source voltage output pin. supply output The Vs output voltage can be changed through the VSEL0 to VSEL2. MVs 417, 418 External Input An external resistance can be input to set any output voltage. EXRV bit = 0: Leave open (Internal resistor selection) resistance input EXRV bit = 1: Connect external resistor. VR 341 to 344 Reference power Gate reference power supply output pin. supply output The VR output voltage can be changed through the VRSEL to VRSEL2 setting. V_{DD2} DC/DC converter 303 to 306, DC/DC converter boost output (VgD x 2) 406, 407 output Vss1 DC/DC converter 299 to 302. DC/DC converter boost output (VgD x -1) output 408 to 411 Vss2 DC/DC converter 295 to 298 DC/DC converter boost output (VgD x -2) output VDC Reference power 345 to 351 Extension pin used to control circuit on panel. supply input for source power supply voltage V_{GD} Reference power 337 to 340 Extension pin used to control circuit on panel. supply input for gate power supply voltage **DCCLK** 405 Boost clock Input Pin used to input boost clock of DC/DC converter. input

Figure 3-2. DC/DC Converter Boost Configuration

9

Figure 3-3. Relationship between Condenser Connection for Booster and Booster Ratio

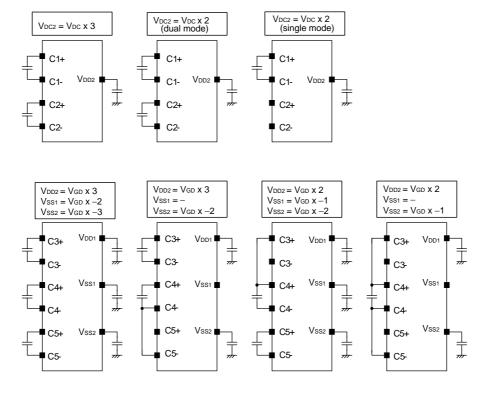
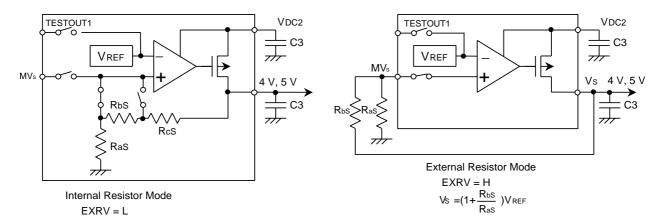



Figure 3-4. Vs, Amp. Circuit Configuration

3.5 Control Pins when Timing Generator Function Not Used, and Other Pins

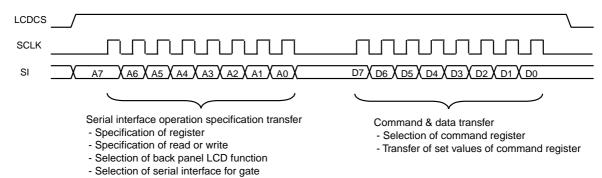
010 001141011	1110 1111011 111111111	,		1101 000u, una outoi i mo
Pin Symbol	Pin Name	Pin Name	I/O	Description
STHR	Right shift start	436	I/O	Start pulse I/O pin during cascade connection. When an H level is read at
	pulse I/O			the rising edge of CLK, fetching of display data starts.
STHL	Left shift start	509, 510	I/O	In the case of right shift, STHR = input and STHL = output.
	pulse I/O			In the case of left shift, STHL = input and STHR = output.
STB	Latch input	441	Input	This is the timing signal at which the contents of the data register are
				latched. When an H level is read at the rising edge of CLK, the contents of
				the data register are latched and transferred to the D/A converter, and an
				analog voltage is output according to the display data. Even after STB
				fetch, do not stop CLK because the internal operation is performed using
				CLK. At the rising edge of STB, the content of the shift register are
				cleared. After one pulse is input at startup, the operation becomes normal.
				At the rising edge of STB, the output switch is switched OFF. For the STB
				input timing, refer to 5. TIMING GENERATOR NON-USE FUNCTION.
AP	Output SW	442	Input	Switches the BIAS circuit ON/OFF and the output switch and amplifier ON.
	ON/OFF			The period during which AP is H is the amplifier circuit setting period and
				the liquid crystal drive period. At the falling edge of AP, the amplifier output
				and output switch go ON and liquid crystal driving starts.
				At the rising edge of STB, the output switch is switched to OFF ad the
				output becomes Hi-Z.
POL	Polarity	443	Input	Inverts the output polarity. At the siring edge of RSEL, the polarity inversion
	inversion signal			signal data is fetched internally. The γ -resistor is switched according to the
				positive and negative polarity.
				POL = L: Negative polarity (common high output)
				POL = H: Positive polarity (common low output)

3.6 Back Panel I CD Controller Driver Control Pins

Pin Symbol	Pin Name	Pin Name	I/O	Description
/CS1	Back panel LCD chip select	470	Output	Active-low chip select signal to the back panel LCD controller driver.
CS2	Back panel LCD chip select	469	Output	Active-high chip select signal to the back panel LCD controller driver.
SCLK_SUB	Serial clock to the back panel LCD	471	Output	Back panel LCD serial data output.
SO_SUB	Outputs serial data to the back panel LCD	472	Output	Outputs serial data to the back panel LCD controller driver.
A0	Back panel LCD data/command control	468	Output	Controls data/command to the back panel LCD controller driver.

3.7 Other Control Pins

Pin Symbol	Pin Name	Pin Name	I/O	Description
TESTIN1 to TESTIN4	TEST input	515 to 512	Input	Keep this pin low-level or leave it open.
TESTOUT	TEST output	511	Output	Leave this pin open.
TEST_COM2	TEST output	414, 415	Output	Leave this pin open.
TEST_VCLAMP	TEST output	412, 413	Output	Leave this pin open.
BGR_O	Hand cap regulator output	416	Output	Leave this pin open.
PVcc	Power supply for pull-up	445	-	This is pull-up power supply for mode setting pin.
PVss	Power supply for pull-down	456	_	This is pull-down power supply for mode setting pin.
Vcc	Logic supply voltage	427 to 430	_	2.2 to 3.6 V
Vss	Driver ground	327 to 331. 431 to 435	-	Grounding
Dummy	Dummy	1 to 4, 249 to 282, 319 to 326, 419 to 426, 462 to 466, 486 to 490, 526 to 532	-	Dummy pin


Caution To avoid latch-up failure, the sequence when turning on the power must be $Vcc \rightarrow logic$ input \rightarrow booster voltage for rising \rightarrow gray-scale power supply (V_0 - V_4), and the reverse sequence when turning off the power. Follow this sequence during shift periods as well.

4. REGISTERS

The μ PD161831 can set a horizontal period and vertical period by using registers. The serial interface is used to specify a register and set values to it. Figure 4–1 shows a simplified timing chart of the serial interface.

Figure 4-1. Timing Chart of Serial Interface

This serial interface has an 8-bit configuration. Note that it is accessed twice in 8-bit units to set a register.

The first 8-bit data (A7 to A0 in figure 4–1) is transferred to the "serial interface operation specification register".

The serial interface operation specification register specifies the transfer operation of the next 8 bits (D7 to D0 in figure 4–1). The second 8-bit data selects a command register or transfers the set value of the command register.

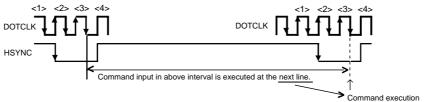
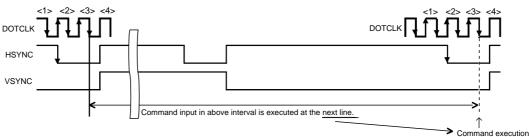

In addition, while writing a setup in command register with the 8-bit transfer + 8-bit (A7 to A0 + D7 to D0) which selects command register or transferring of 8 bit + 8-bit transfer of readings (A7 to A0 + D7 to D0) (a total of 32 bits), continue making chip select (LCDCS) active.

Table 4–1 indicates the function of the serial interface operation specification register. Table 4–2 shows the register number and register name of each command register. Tables 4–3 and 4–5 to 4–24 describe the function of each command register.


When the timing generator is used, there are three execution patterns for each command: Immediate execution following setting, execution at the line following that where command was set, and execution at the frame following that where command was set. In the case of execution at the next line and execution at the next frame, the concrete command execution timing is as follows.

However, when the timing generator is not used, commands are executed at the first falling edge of DCK following command transmission.

• Execution from next line following command input (HSYNC, DOTCLK = low active)

• Execution from next frame following command input (VSYNC, HSYNC, DOTCLK = low active)

4.1 Serial Interface Operation Specification Register

Table 4–1 shows the function of the serial interface operation specification register.

Table 4-1. Function of Serial Interface Operation Specification Register (A7 to A0)

No.	Bit Name	Function
A7	_	-
A6	μPD161831/back	This bit specifies whether data D7 to D0 are data for a register of the μ PD161831 or data for the
	panel LCD select	back panel LCD. If D7 to D0 are data for the back panel LCD, the chip select pins for the back
		panel LCD (/CS1 = L, CS2 = H) are asserted, and data D7 to D0 are output to SUB_SO along
		with the clock output by SCLK_SUB.
		0: D7 to D0 are data for a μ PD161831 register.
		1: D7 to D0 are data for the back panel LCD controller driver.
A5	Read/write select	This bit selects whether the transfer of data D7 to D0 is for a read operation or a write operation.
		Note, however, that in a read operation, only the registers of the μ PD161831 can be read.
		For the timing chart of the read operation, refer to 5. TIMING GENERATOR NON-USE
		FUNCTION.
		0: D7 to D0 are for a write operation.
		1: D7 to D0 are for a read operation.
A4	_	-
А3	_	-
A2	_	_
A1	_	-
A0	Command/data	This bit selects whether data D7 to D0 specify the register number of a command register or are
	select	set to a command register.
		If an access to the back panel LCD controller driver is selected (A6 = 1), the value of this bit is
		reflected on the A0 pin (when A0 = 0: Low output, when A0 = 1: High output).
		0: D7 to D0 specify a register number.
		1: D7 to D0 are set to a register.

4.2 Command Registers

4.2.1 Command register list

Table 4-2 lists the command registers.

However, each register is read default value when invalid data leads in unused of timing generator.

Table 4–2. Command Register List (1/2)

Register			D5 t	o D0			Register Name	Default Value	•	Generator	Res	set	Internal Set
INO.	D5	D4	D3	D2	D1	D0		value	Use	Not used	Command	Hard	riming
R0	0	0	0	0	0	0	65,000/260,000 color select	00H	0	_	0		F
R1	0	0	0	0	0	1	Horizontal period valid data input start timing	0AH	0	_	0	-	F
R2	0	0	0	0	1	0	Vertical period valid data input start timing	02H	0	-	0	-	F
R3	0	0	0	0	1	1	Horizontal valid pixel data setting	00H	0	-	0		С
R4	0	0	0	1	0	0	Standby	00H	0	0	0	-	F
R5	0	0	0	1	0	1	8-color mode	00H	0	0	0	-	L
R6	0	0	0	1	1	0	Setting	02H	0	Δ1	0	Note1	Note2
R7	_	_	_	_	_	_	Use prohibited (Not used)	_		_	_		-
R8	0	0	1	0	0	0	Amplifier drive period setting	0EH	0	_	0	_	С
R9	0	0	1	0	0	1	Quarter data function	00H	0	0	0	_	F
R10	0	0	1	0	1	1	Level shifter voltage setting	00H	0	0	0	_	С
R11	0	0	1	1	0	0	Common amplitude voltage adjustment D/A converter	0FH	0	0	0	_	С
R12	0	0	1	1	0	1	Common center voltage adjustment D/A converter	35H	0	0	0	-	С
R13, R14	_	-	-	_	_	_	Use prohibited (Not used)	_	-	_	_	-	-
R15	0	0	1	1	1	1	Command reset	00H	0	0	_	_	С
R16 to R23	_	_	_	_	_	_	Use prohibited (Not used)	_	_	_	_	_	_
R24	0	1	1	0	0	0	DC/DC operation setting	00H	0	0	0	0	С
R25	0	1	1	0	0	1	DC/DC step setting	16H	0	0	0	0	С
R26	0	1	1	0	1	0	DC/DC oscillation setting	15H	0	0	0	0	С
R27	0	1	1	0	1	1	Regulator output setting	2AH	0	0	0	0	С
R28	0	1	1	1	0	0	LPM setting	00H	0	0	0	0	С
R29 to R32	_	_	_	_	_	_	Use prohibited (Not used)	_	_	_	_	_	_
R33	1	0	0	0	0	1	DC/DC rise setting	00H	0	0	0	0	С
R34, R35	_	_	_	_	_	_	Use prohibited (Not used)	_	_	_	_	_	_

Remarks 1. O: Enabled, -: Disabled, $\Delta 1$: Only bit 3 disabled, $\Delta 2$: Only bit 7 enabled

- 2. The internal set timing is the timing at which the command is enabled.
 - C: Enabled when command is set
 - F: Enabled at beginning of frame
 - L: Enabled at beginning of line

Notes 1. Bit 0 is enabled when line is set. Bit 3 is enabled when frame is set. All other bits are enabled when command is set.

2. Bits 4 and 5 are enabled when hard reset is performed. All other bits are disabled.

Table 4–2. Command Register List (2/2)

Register			D5 t	o D0			Register Name	Register Name Default Value Timing Generator Function				set	Internal Set
No.	D5	D4	D3	D2	D1	D0		value	Use	Not used	Command	Hard	Timing
R36	1	0	0	1	0	0	RSW_O start timing setting	0FH	0	_	0	-	С
R37	1	0	0	1	0	1	RSW_O end timing setting	1DH	0	-	0	-	С
R38	1	0	0	1	1	0	GSW_O start timing setting	1EH	0	_	0	-	С
R39	1	0	0	1	1	1	GSW_O end timing setting	2CH	0	_	0	-	С
R40	1	0	1	0	0	0	BSW_O start timing setting	2DH	0	-	0	-	С
R41	1	0	1	0	0	1	BSW_O end timing setting	3BH	0	-	0	-	С
R42	1	0	1	0	1	0	EXT1_O start timing setting	0AH	0	-	0	-	С
R43	1	0	1	0	1	1	EXT1_O end timing setting	0AH	0	_	0	-	С
R44	1	0	1	1	0	0	EXT2_O start timing setting	0AH	0	_	0	-	С
R45	1	0	1	1	0	1	EXT2_O end timing setting	0AH	0	_	0	-	С
R46	1	0	1	1	1	0	EXT3_O start timing setting	0AH	0	_	0	-	С
R47	1	0	1	1	1	1	EXT3_O end timing setting	0AH	0	-	0	-	С
R48	1	1	0	0	0	0	EXT1 to EXT3 function setting	80H	0	Δ2	0	-	С
R49	1	1	0	0	0	1	GOE1 start timing setting	04H	0	-	0	-	С
R50	1	1	0	0	1	0	GOE1 end timing setting	38H	0	-	0	-	С
R51	1	1	0	0	1	1	Dummy line setting	00H	0	_	0	-	F
R52, R53	_		_	-	_	_	Use prohibited (Not used)	_	-	_	_	-	-
R54	1	1	0	1	1	0	COM2, VCLAMP control	00H	0	0	0	0	С
R55	1	1	0	1	1	1	Test mode setting	00H	0	0	0	-	С
R56 to R255	_	_	_	_	_	_	Use prohibited (Not used)	_	_	_	_	_	_

Remarks 1. O: Enabled, -: Disabled, $\Delta 1$: Only bit 3 disabled, $\Delta 2$: Only bit 7 enabled

- 2. The internal set timing is the timing at which the command is enabled.
 - C: Enabled when command is set
 - F: Enabled at beginning of frame
 - L: Enabled at beginning of line

Notes 1. Bit 0 is enabled when line is set. Bit 3 is enabled when frame is set. All other bits are enabled when command is set.

2. Bits 4 and 5 are enabled when hard reset is performed. All other bits are disabled.

4.2.2 65,536/262,144 color select register

This register is used to select the number of colors (65,536 or 262,144 colors) of one pixel and specify the data transfer mode when 262,144 colors are selected.

If transferring 262,144 colors twice is selected, the time required to transfer the data of one pixel is two times longer than that of the first transfer (if the dot clock frequency is the same). To make the frame frequency for the first transfer and the second transfer the same, therefore, increase the dot clock frequency for the second transfer to twice that of the first transfer.

Note also that the setting of this register is reflected from the operation of the next frame after the register is set.

Register Set Value	Function
00H	65,536 colors: 16-bit data is transferred once
01H Note	262,144 colors: 12-bit and 6-bit data are transferred twice.
02H Note	262,144 colors: 9-bit and 9-bit data are transferred twice.
03H	262,144 colors: 18-bit data is transferred once
04H-FFH	Use prohibited

Table 4-3. 65,536/262,144 Color Select Register (R0)

Note The 65,536/262,144 color select register cannot be used in mode that do not use the timing generator.

The relationship between each data transfer mode and the display data input pins (D₀₅ to D₀₀, D₁₅ to D₁₀, and D₂₅ to D₂₀) is shown in the table below. The data input to D₀₅ to D₀₀ is output during the period while BSW_O is active, and the data input to D₂₅ to D₂₀ is output during the period while RSW_O is active.

However, Red5, Green5, Blue5 in table 4-4 are the data lines needed to input in 8-color mode.

Table 4–4. Relationship Between Data Transfer Mode and Display Data Input Pins ("-" indicates that input data is invalid)

5 5 .				262,144 Colors			
Display Data Input Pin	65,536 Colors	One transfer,	Two transfers	, 12-bit + 6-bit	Two transfers, 9-bit + 9-bit		
input Fili		18-bit	First transfer	Second transfer	First transfer	Second transfer	
D25	Red5	Red5	Red5	Blue5	Red5	Green2	
D24	Red4	Red4	Red4	Blue4	Red4	Green1	
D23	Red3	Red3	Red3	Blue3	Red3	Green0	
D22	Red2	Red2	Red2	Blue2	Red2	Blue5	
D21	Red1	Red1	Red1	Blue1	Red1	Blue4	
D20	_ Note	Red0	-	_	_	_	
D15	Green5	Green5	Red0	Blue0	Red0	Blue3	
D14	Green4	Green4	-	_	<u>Green5</u>	Blue2	
D13	Green3	Green3	_	_	Green4	Blue1	
D12	Green2	Green2	Green5	_	Green3	Blue0	
D11	Green1	Green1	Green4	_		_	
D10	Green0	Green0	Green3	_	_	_	
D05	Blue5	Blue5	Green2	_	_	_	
D04	Blue4	Blue4	Green1	_	_	_	
D03	Blue3	Blue3	Green0	_	_	_	
D02	Blue2	Blue2	_	_	_	_	
D ₀₁	Blue1	Blue1	_	_	_	_	
D00	_ Note	Blue0	_	_	_	_	

Note It is not necessary to input data to the D₂₀ and D₀₀ pins when 65,536 colors are selected, but amplifier output is performed on the assumption that data input to D₂₅ and D₀₅ is input to D₂₀ and D₀₀.

4.2.3 Horizontal period valid input start timing setting register

This register sets the timing to start inputting the valid data of the horizontal period in HSYNC and VSYNC mode.

It sets the number of dot clocks from the falling edge of the HSYNC signal until the input data becomes valid. If transferring display data twice is selected, set half the number of dot clocks actually needed. Note also that the setting of this register is reflected from the operation of the next frame after the register is set.

Table 4–5. Horizontal Period Valid Input Start Timing Setting Register (R1)

Register Set Value	Number of Dot Clocks
00H	4 clocks
01H	4 clocks
:	:
04H	4 clocks
05H	5 clocks
06H	6 clocks
07H	7 clocks
;	:
FDH	253 clocks
FEH	254 clocks
FFH	255 clocks

4.2.4 Vertical period valid input start timing setting register

This register sets the timing to start inputting the valid data of the vertical period in HSYNC and VSYNC mode. It sets the number of HSYNC from the falling edge of the VSYNC signal until the input data becomes valid. Note also that the setting of this register is reflected from the operation of the next frame after the register is set.

Table 4-6. Vertical Period Valid Input Start Timing Setting Register (R2)

Register Set Value	Number of HSYNC Signals
00H	2
01H	2
02H	2
03H	3
04H	4
05H	5
06H	6
:	:
FDH	253
FEH	254
FFH	255

4.2.5 Horizontal Valid Pixel Data Register

This register sets the number of valid pixel data during the horizontal period in HSYNC and VSYNC mode. Note also that the setting of this register is reflected from the operation of the next frame after the register is set.

Table 4-7. Horizontal Valid Pixel Data Register (R3)

Register Set Value	Number of Valid Data
00H	240
01H	244
02H	480
03H	488

4.2.6 Standby register

This register is used to set or restore from a standby mode. The data set to bits 7 to 1 of this register is ignored.

When a standby command is input, the μ PD161831 performs white display (source output, and Vss level output by COMC) from the next frame following command output. Following the execution of this command, execute the regulator OFF command and the DC/DC converter OFF for the power supply function. Also when standby is canceled, doing the opposite of when standby is input, execute the normal operation command (R4 = "0") after setting both the DC/DC converter and the regulator to ON..

Table 4-8. Standby Register (R4)

Bit 0 Set Value	Mode
0	Normal operation mode
1	Standby mode

4.2.7 8-color mode register

This register is used to select the 8-color mode. The data set to bits 7 to 1 of this register is ignored. The data line that must be input in 8-color mode differs depending on the selection of the 65,000-color mode and 260,000-color transfer mode. For the actual data line to be used, refer to Table 4–4.

Note that the setting of this register is reflected from the operation of the next line after the register is set.

Table 4-9. 8-Color Mode Register (R5)

Bit 0 Set Value	Mode
0	65,000/260,000 colors (R0 register is valid)
1	8-color mode

4.2.8 Setting register

This register is used to set the low power mode and the direction of scanning. Data set to bits 6 and bit7 of these register are ignored.

Table 4-10. Setting Register (R6)

Bit Name	Mode
Bit 0	Adjusts the driver bias current of the μ PD161831 to enter the low power mode. Since the through rate of the operational amplifier inside the IC changes, be sure to carefully perform panel evaluation. Note that
	the setting of this bit is reflected from the operation of the next line after the register values are set.
	Bit 0 = 0: Driver output low power mode
	Bit 0 = 1: Normal mode
Bit 1	Selects the scanning direction by using the GRL_O and GSTB_O pins. This bit becomes valid as soon as
	it is set. Therefore, it must be set after gate scanning of one frame has been completed and before
	scanning of the next frame is started. The setting of this bit is reflected in the operation immediately after
	the register is set.
	Bit 1 = 0: Reverse scan (scanning from bottom to top, GRL_O = L output)
	Bit 1 = 1: Forward scan (scanning from top to bottom, GRL_O = H output)
Bit 2	Selects whether the display data input to the μ PD161831 is input from S ₃ to S ₂₄₂ , or vice versa.
	<240 output selection>
	Bit2 = 0: $S_{242} \rightarrow S_3$
	$Bit2 = 1: S_3 \rightarrow S_{242}$
	<244 output selection>
	Bit2 = 0: $S_{244} \rightarrow S_1$
	Bit2 = 1: $S_1 \to S_{244}$
	The relationship between the input data and output pin is as follows:
	The setting of this bit is reflected in the operation immediately after the register is set.
Bit 3	Selects whether the line or frame is inverted. In the 8-color mode, the power consumption can be further
	reduced by selecting frame inversion.
	The setting of this bit is reflected from the operation of the next line after the register is set.
	Bit 3 = 0: Line inversion
	Bit 3 = 1: Frame inversion
Bit 4	Performs GOE1 output control. When bit 4 = 0, a Low level is forcibly output to GOE1.
	Bit 4 = 0: Forcible output of low level to GOE1.
	Bit 4 = 1: Normal operation
Bit 5	Controls ON/OFF switching of square wave output from the COMC pin.
	Bit 5 = 0: Output Vss level
	Bit 5 = 1: Output square wave
Bit 6, bit 7	Use prohibited

4.2.9 Amplifier drive period setting register

In the μ PD161831, the amplifier drive period is set with the horizontal period address count (HCNT) as the driver output. The amplifier drive period set with this register is the drive period of R, G, and B, respectively, when division by 3 is performed. The amplifier drive start timing is the RGW_O, GSW_O, and BSW_O signal start timing. For detail, refer to figures 4–2 through 4–6.

Note that the setting of this register is reflected to the operation immediately after the register is set. The effective bits of this register are bit 0 to bit 4.

Figure 4–7 indicates how the amplifier of the μ PD161831 is driven.

Table 4-11. Amplifier Drive Period Setting Register (R8)

Register Set Value	Horizontal Period Address Count
00H	0
01H	1
02H	2
03H	3
04H	4
:	:
1DH	29
1EH	30
1FH	31

Figure 4–2. Horizontal Period Amplifier Drive Timing and GCK/GOE1 Signal Output Timing (When line inversion is set: When VSYNC signal is active)

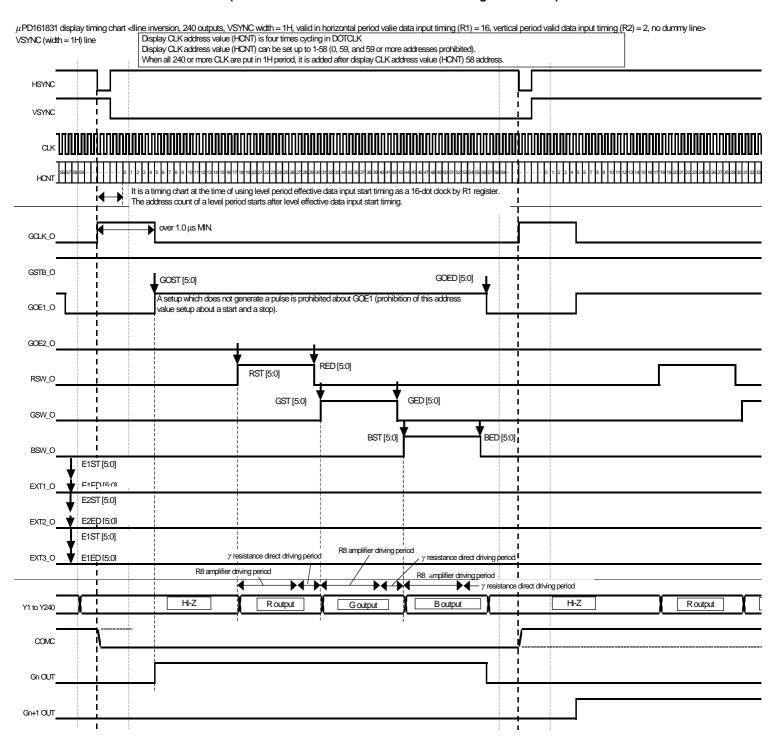


Figure 4–3. Horizontal Period Amplifier Drive Timing and GCK/GOE1 Signal Output Timing (When line inversion is set: Line immediately after VSYNC to valid data input start line)

 μ PD161831 display timing chart <ine inversion, 240 outputs, VSYNC width = 1H, horizontal period valid data input timing (R1) = 16, vertical period valid data input timing (R2) = 2, no dummy lines Line right after VSYNC to valid data input start ling

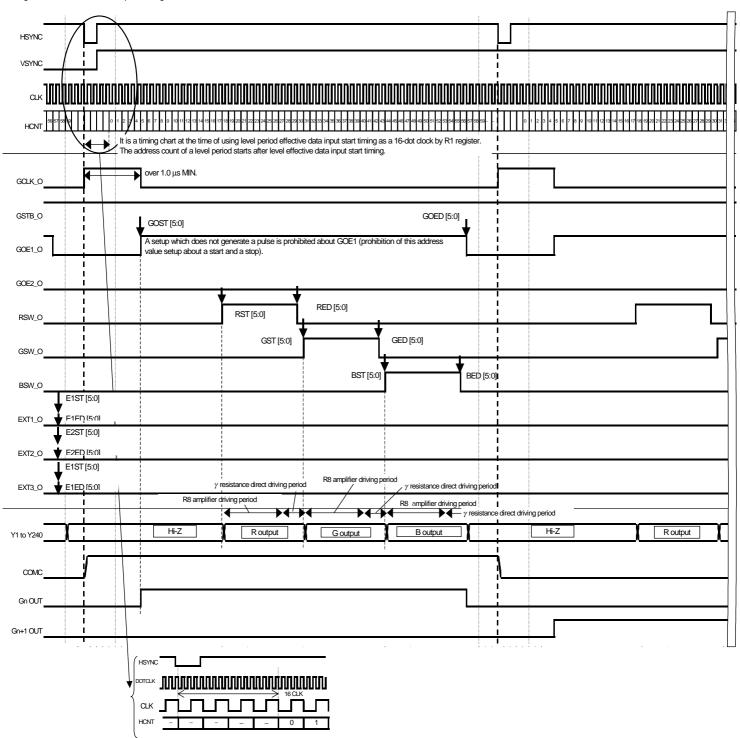


Figure 4–4. Horizontal Period Amplifier Drive Timing and GCK/GOE1 Signal Output Timing (When line inversion is set: Laid data input start line to GSTB output line)

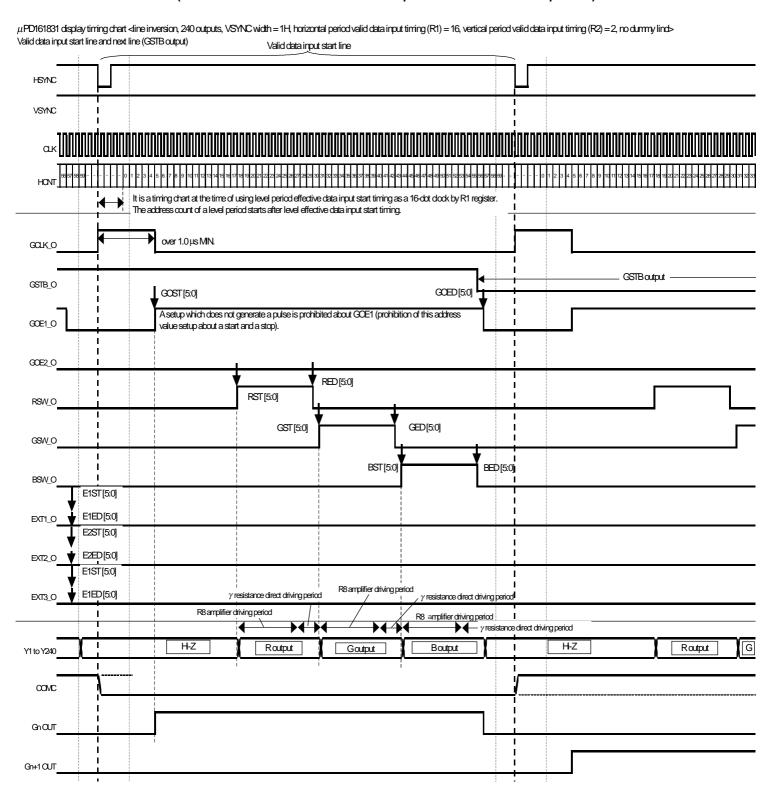


Figure 4–5. Horizontal Period Amplifier Drive Timing and GCK/GOE1 Signal Output Timing (When frame inversion is set, positive polarity)

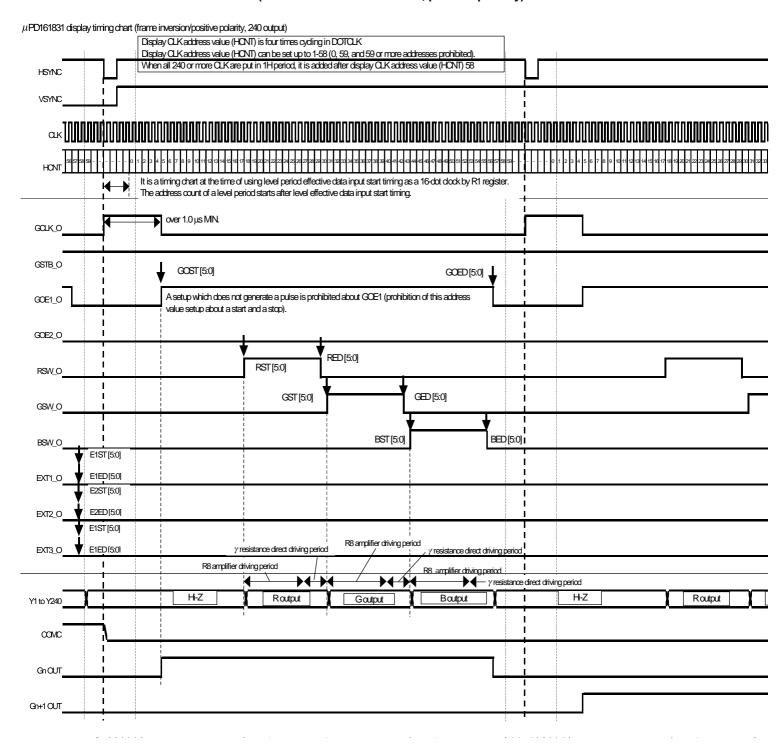
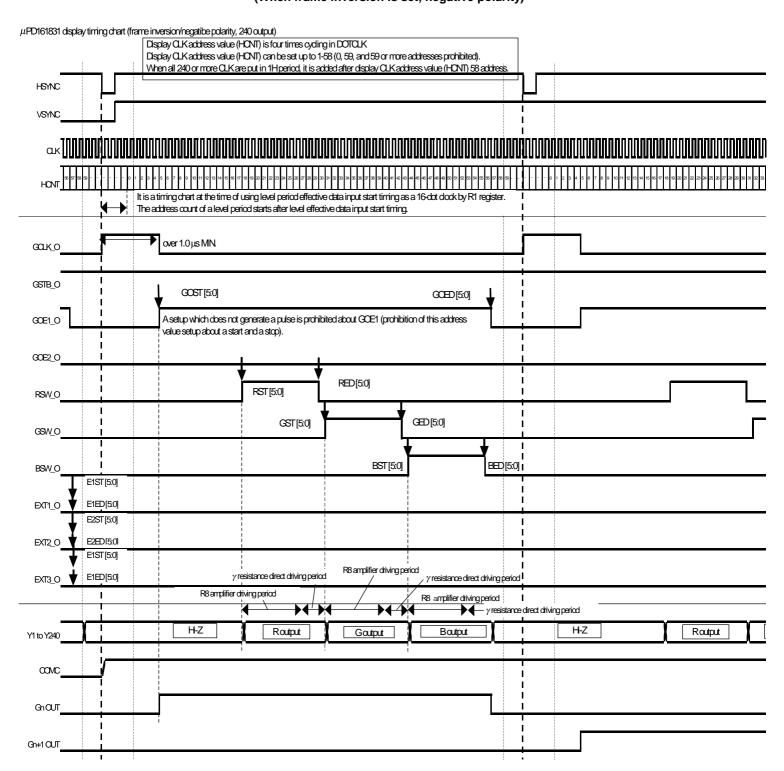



Figure 4–6. Horizontal Period Amplifier Drive Timing and GCK/GOE1 Signal Output Timing (When frame inversion is set, negative polarity)

The LCD driver circuit of the μ PD161831 consists of " γ resistor", " γ select switch", "D/A converter", and "output stage", as shown below. The following amplifier drive period can be selected by using R8, the amplifier drive period setting register.

 γ resistor : String resistor for γ curve

 γ select switch: Selects γ curve during positive pole or negative pole driving

D/A converter: Selects the output voltage level from display data.

Output stage: Consists of a driving amplifier, a switch for voltage hold driving, and an inverter for 8-color display.

Positive polarity Negative polarity

Output for 8-color display

Figure 4-7. Output circuit image of Amplifier Drive Operation

4.2.10 Quarter data function register

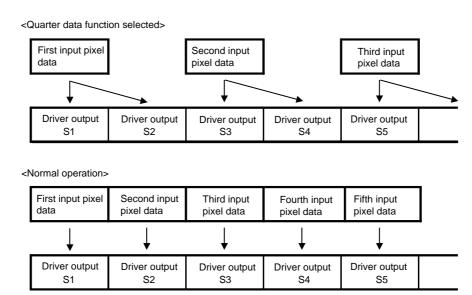
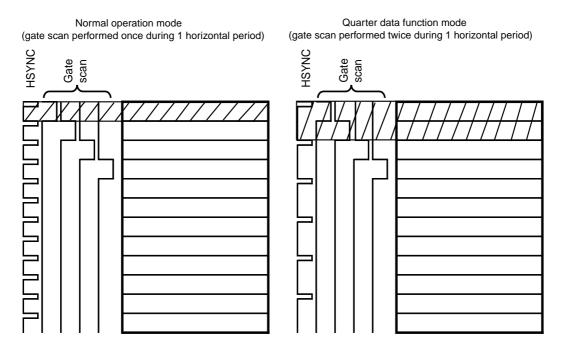

The quarter data function is selected with the bit 0 setting.

Table 4-12. Quarter Data Function Register (R9)

Bit 0	Mode
0	Normal operation
1	Quarter data function operation

When the quarter data function is selected, one pixel of input data is also used as the neighboring 1 pixel of data. The data that is next input externally becomes the pixel data after the neighboring 1-pixel data mentioned above.

Figure 4–8. Quarter Data Function



*μ*PD161831

Moreover, when the quarter data function is selected, 2-lines' worth of data output are gate scanned during the horizontal period corresponding to 1 line.

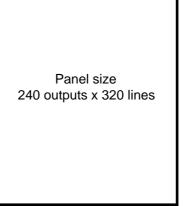
Figure 4–9. Gate Scan Operation when Quarter Data Function is Selected

The horizontal period timing is as follows.

μPD161831 display timing chart (line inversion, 240 output, quarter data function)

Display CLK address value (HONT) is four times cycling in DOTCLK Display CLK address value (HONT) can be set up to 1-58 (0, 59, and 59 or more addresses prohibited). When all 240 or more CLK are put in 1 H period, it is added after display CLK address value (HONT) 58 address HSYNC After HSYNC becomes active, a level period starts by 1 dock of DOTCLK VSYNC It is a timing chart at the time of using level period effective data input start timing as a 16-dot clock by R1 It is a timing chart at the time of using level period effective data input register. The address count of a level period starts after level effective data input start timing. start timing as a 16-dot clock by R1 register. The address count of a level period starts after level effective data input start timing. over 1.0 µs MN. GOTK_O over 1.0 ms MIN After HSYNC becomes active, GOLK becomes active by 2 dock of DOTOLK GSTB_O 11 GOST [5:0] GOED [5:0] 11 A setup which does not generate a pulse is prohibited about GOE1 (prohibition of this address G0E1_0 value setup about a start and a stop). GOE2 O RED[5:0] RST [5:0] RSW_O GED [5:0] GST[5:0] H GSW_O BST [5:0] BED [5:0] BSW O E1ST[5:0] 11 11 EXT1_O E1ED[5:0] E2ST [5:0] μĪ EXT2_O ESED [5:0] E1ST [5:0] 11 R8 amplifier driving period γ resistance direct driving period EXT3 O γ resistance direct driving period R8 amplifier driving period R8 amplifier driving period II $-\gamma$ resistance direct driving period 11 H-Z Hi-Z Routput Goutput Boutput Routput Y1 to Y240 11 COMC 11 11 Gn OUT 11 Gn+1 CUT

Figure 4-10. Horizontal Period Timing Chart when Quarter Data Function is Selected


As an image, in order to perform display of 240 outputs x 320 lines during normal operation, 240 outputs x 640 lines of data are input, but when the quarter data function is selected, in order to perform display of 240 outputs x 320 lines, just 120 outputs x 160 lines of data can be input.

While display is less fine compared to during normal operation, the input data is just one fourth the amount during normal operation, and transfer data can be reduced during moving picture display.

<Normal operation> Amount of data required to display 1 screen = 240 outputs x 320 lines

<Quarter data function selected> Amount of data required to display 1 screen = 120 outputs x 160 lines

4.2.11 Level shifter voltage setting register

Then negative voltage level of the level shifter is set by setting bit 0 and bit1.

The circuit block of the level shifter is divided into the gate control signal side (GCLK_O, GSTB_O, GOE1_O, GOE2_O) and the driver output related signal side (RSW_O, GSW_O, BSW_O, EXT1_O to EXT3_O), and the negative voltage side voltage level can be selected individually for the gate control signal side and the driver output related signal side between either Vss1 and Vss2 with the R11 register.

The data set to bit 1 and bit 2 is ignored. Note that the setting of this register is reflected to the operation immediately after the register is set.

Bit Name	Mode						
Bit 0	Sets the voltage level on the negative voltage side of the gate output control signals						
	(GCLK_O, GSTB_O, GOE1_O, GOE2_O).						
	Bit 0 = 0: Vss ₂ level						
	Bit 0 = 1: Vss1 level						
Bit 1	Sets the voltage level on the negative voltage side of the driver output related signals						
	(RSW_O, GSW_O, BSW_O, EXT1_O to EXT3_O)						
	Bit 1 = 0: Vss2 level						
	Bit 1 = 1: Vss1 level						

Table 4-13. Level Shifter Voltage Setting Register (R10)

4.2.12 Common amplitude voltage adjustment D/A converter register

The common amplitude voltage can be selected by setting bit 0 to bit 3 of the R11 register.

The voltage between (34/50)*Vs and (49/50)*Vs is divided by the 4-bit D/A converter. Note that the setting of this register is reflected to the operation immediately after the register is set.

4.2.13 Common center voltage adjustment D/A converter register

The common center voltage can be selected by setting bit 0 to bit 6 of the R12 register. The voltage between 0 (V) and 0.6*Vs (V) is divided by the 7-bit D/A converter. Note that the setting of this register is reflected to the operation immediately after the register is set.

4.2.14 Command reset register

Bit 0 of this register is used to initialize the command register. Data set to bit 1 to bit 7 is ignored. Command reset is automatically cleared after it is set. The setting of this bit is reflected in the operation immediately after the register is set.

Table 4-14. Command Reset Register (R15)

Bit 0	Mode		
0	Normal operation		
1	Command reset		

4.2.15 DC/DC operation setting register

The register is used to switch ON/OFF the DC/DC converter controls and switch ON/OFF boosting of each power supply.

Table 4-15. DC/DC Operation Setting Register (R24)

Bit Name	Mode		
Bit 0	Controls ON/OFF in DC/DC converter.		
<dcon></dcon>	Bit 0 = 0: DC/DC converter OFF		
	Bit 0 = 1: DC/DC converter ON		
Bit 1	Use prohibited		
Bit 2	Control ON/OFF in VDD2 booster.		
<vd2on></vd2on>	Bit 2 = 0: V _{DD2} booster OFF		
	Bit 2 = 1: VDD2 booster ON		
Bit 3	Control ON/OFF in VDC2 booster.		
<vdc2on></vdc2on>	Bit 3 = 0: V _{DC2} booster OFF		
	Bit 3 = 1: V _{DC2} booster ON		
Bit 4	Control ON/OFF in Vss1 booster.		
<vs10n></vs10n>	Bit 4 = 0: Vss1 booster OFF		
	Bit 4 = 1: Vss1 booster ON		
Bit 5	Control ON/OFF in Vss2 booster.		
<vs2on></vs2on>	Bit 5 = 0: Vss ₂ booster OFF		
	Bit 5 = 1: Vss2 booster ON		
Bit 6	Control ON/OFF in V _R regulator.		
<rgonr></rgonr>	Bit 6 = 0: V _R regulator OFF		
	Bit 6 = 1: VR regulator ON		
Bit 7	Use prohibited		

4.2.16 DC/DC step setting register

This register is used to set the boost step, etc., of the DC/DC converter.

Table 4-16. DC/DC Step Setting Register (R25)

Bit Name	Mode			
Bit 0: VcD2	Selects the number of boost steps for V _{DC2} .			
	Vcd2 = 0: Vdc2 = Vdc x 2			
	Vcd2 = 1: Vdc2 = Vdc x 3			
Bit 1: VMs	Selects the boost mode for V _{DC2} .			
	VMs = 0: Single boosting mode			
	VMs = 1: Dual boosting mode			
Bit 2: VRSEL0	Selects the V _R regulator's output voltage.			
Bit 3: VRSEL1	<pre><vrsel0 0,="" =="" vrsel1="0," vrsel2="0">: VR = 3.0 V</vrsel0></pre>			
Bit 4: VRSEL2	<pre><vrsel0 1,="" =="" vrsel1="0," vrsel2="0">: VR = 3.5 V</vrsel0></pre>			
	<pre><vrsel0 0,="" =="" vrsel1="1," vrsel2="0">: VR = 4.0 V</vrsel0></pre>			
	<pre><vrsel0 1,="" =="" vrsel1="1," vrsel2="0">: VR = 4.5 V</vrsel0></pre>			
	<pre><vrsel0 0,="" =="" vrsel1="0," vrsel2="1">: VR = 4.75 V</vrsel0></pre>			
	<pre><vrsel0 1,="" =="" vrsel1="0," vrsel2="1">: VR = 5.0 V</vrsel0></pre>			
	<pre><vrsel0 0,="" =="" vrsel1="1," vrsel2="1">: VR = 5.25 V</vrsel0></pre>			
	<pre><vrsel0 1,="" =="" vrsel1="1," vrsel2="1">: VR = 5.5 V</vrsel0></pre>			
Bit 5 to bit7	Use prohibited			

4.2.17 DC/DC oscillation setting register

This register is used to set the boost frequency, etc., of the DC/DC converter.

Table 4-17. DC/DC oscillation setting register (R26)

Bit Name		Mode							
Bit 0: FS0	Selects the V _{DC2} boost frequency when other an the power supply function low-power mode is								
Bit 1: FS1	selected.								
	<fs< td=""><td colspan="8"><fs0 0,="" =="" fs1="0">: fosc/2, <fs0 1,="" =="" fs1="0">: fosc/4</fs0></fs0></td></fs<>	<fs0 0,="" =="" fs1="0">: fosc/2, <fs0 1,="" =="" fs1="0">: fosc/4</fs0></fs0>							
	<fs< td=""><td>80 = 0, FS1</td><td>= 1>: fosc/8, <fs0 =<="" td=""><td>1, FS1 = 1>: fosc/16</td><td></td></fs0></td></fs<>	80 = 0, FS1	= 1>: fosc/8, <fs0 =<="" td=""><td>1, FS1 = 1>: fosc/16</td><td></td></fs0>	1, FS1 = 1>: fosc/16					
Bit 2: FS2	Sele	ects the Vo	D2, VSS1, VSS2 boost fr	equency when other than the	he low-power supply function				
Bit 3: FS3	pow	er mode is	selected.						
	<fs< td=""><td colspan="7"><fs2 0,="" =="" fs3="0">: fosc/2, <fs2 1,="" =="" fs3="0">: fosc/4</fs2></fs2></td></fs<>	<fs2 0,="" =="" fs3="0">: fosc/2, <fs2 1,="" =="" fs3="0">: fosc/4</fs2></fs2>							
	<fs< td=""><td colspan="6"><fs2 0,="" =="" fs3="1">: fosc/8, <fs2 1,="" =="" fs3="1">: fosc/16</fs2></fs2></td></fs<>	<fs2 0,="" =="" fs3="1">: fosc/8, <fs2 1,="" =="" fs3="1">: fosc/16</fs2></fs2>							
Bit 4: CLS0	Selects the internal oscillation frequency of the DC/DC converter function.								
Bit 5: CLS1	<cls0 0,="" =="" cls1="0," cls2="0">: fosc = 12.5 kHz, DCCLK: Open</cls0>								
Bit 6: CLS2	<cls0 1,="" =="" cls1="0," cls2="0">: fosc = 15 kHz, DCCLK: Open</cls0>								
	<cls0 0,="" =="" cls1="1," cls2="0">: fosc = 20 kHz, DCCLK: Open</cls0>								
	<cls0 1,="" =="" cls1="1," cls2="0">: External clock DCCLK input mode</cls0>								
	<cls0 0,="" =="" cls1="0," cls2="1">: External clock DCK 128 cycle mode</cls0>								
	<cls0 1,="" =="" cls1="0," cls2="1">: External clock DCK 256 cycle mode</cls0>								
Bit 7: FUP	Selects the internal oscillation frequency of the DC/DC converter function.								
		Internal Oscillation External DCK 128 Cycles External DCK 256 Cycles							
		FUP = 0 fosc DCK/128 DCK/256							
		FUP = 1 fosc x 2 DCK/64 DCK/128							

4.2.18 Regulator output setting register

This register is used to switch the regulator ON/OFF, set the output voltage, etc.

Table 4–18. Regulator Output Setting Register (R27)

Bit Name	Mode
Bit 0: RGON	Controls Vs regulator ON/OFF.
	RGON = 0: Vs regulator OFF
	RGON = 1: Vs regulator ON
Bit 1: VSEL0	Selects the Vs regulator output voltage.
Bit 2: VSEL1	<vsel0 0,="" =="" vsel1="0," vsel2="0">: Vs = 3.0 V</vsel0>
Bit 3: VSEL2	<vsel0 1,="" =="" vsel1="0," vsel2="0">: Vs = 3.5 V</vsel0>
	<vsel0 0,="" =="" vsel1="1," vsel2="0">: Vs = 4.0 V</vsel0>
	<vsel0 1,="" =="" vsel1="1," vsel2="0">: Vs = 4.5 V</vsel0>
	<vsel0 0,="" =="" vsel1="0," vsel2="1">: Vs = 4.75 V</vsel0>
	<vsel0 1,="" =="" vsel1="0," vsel2="1">: Vs = 5.0 V</vsel0>
	<vsel0 0,="" =="" vsel1="1," vsel2="1">: Vs = 5.25 V</vsel0>
	<vsel0 1,="" =="" vsel1="1," vsel2="1">: Vs = 5.5 V</vsel0>
Bit 4: EXRV	Selects whether to use an external resistor for the Vs regulator.
	EXRV = 0: Internal resistor mode
	EXRV = 1: Connect external resistor to MVs and set voltage to any
	desired value.
Bit 5: ACS0	Selects the V _R and V _S amplifier current.
Bit 6: ACS1	$<$ ACS0 = 0, ACS1 = 0>: Amp. current = 5 μ A
	$<$ ACS0 = 1, ACS1 = 0>: Amp. current = 10 μ A
	$<$ ACS0 = 0, ACS1 = 1>: Amp. current = 15 μ A
	$<$ ACS0 = 1, ACS1 = 1>: Amp. current = 30 μ A
Bit 7	Use prohibited

4.2.19 Power supply function LPM setting register

This register is used to set the power supply function low-power mode, etc.

Table 4-19. Power Supply Function LPM Setting Register (R28)

Bit Name	Mode					
Bit 0: LPM	Controls the power supply function low-power mode					
	LPM = 0: Normal mode					
	LPM = 1: Low power mode					
Bit 1: LFS0	Selects the VDC2 boost frequency when the power supply function low-					
Bit 2: LFS1	power mode is selected.					
	<pre><lfs0 0,="" =="" lfs1="0">: fosc/8, <lfs0 1,="" =="" lfs1="0">: fosc/16</lfs0></lfs0></pre>					
	<pre><lfs0 0,="" =="" lfs1="1">: fosc/32, <lfs0 1,="" =="" lfs1="1">: fosc/64</lfs0></lfs0></pre>					
Bit 3: LFS2	Selects the V _{DD2} , V _{SS1} , and V _{SS2} boost frequency when the power supply					
Bit 4: LFS3	function low-power mode is selected.					
	<pre><lfs2 0,="" =="" lfs3="0">: fosc/8, <lfs2 1,="" =="" lfs3="0">: fosc/16</lfs2></lfs2></pre>					
	<pre><lfs2 0,="" =="" lfs3="1">: fosc/32, <lfs2 1,="" =="" lfs3="1">: fosc/64</lfs2></lfs2></pre>					
Bit 5: LACS0	Selects the V _R and V _S amplifier current.					
Bit 6: LACS1	<lacs0 0,="" =="" lacs1="0">: Amp. current = 1.25 μA</lacs0>					
	<lacs0 1,="" =="" lacs1="0">: Amp. current = 2.5 μA</lacs0>					
	<pre><lacs0 0,="" =="" lacs1="1">: Amp. current = 5.0 μA</lacs0></pre>					
	<lacs0 1,="" =="" lacs1="1">: Amp. current = 7.5 μA</lacs0>					
Bit 7	Use prohibited					

4.2.20 DC/DC startup setting register

This register is used to set the DC/DC startup time, startup mode, etc.

Table 4-20. DC/DC startup Setting Register (R33)

Bit Name	Mode
Bit 0: PUPT0	Sets the V _{DC2} , V _{DD2} , V _{SS1} , and V _{SS2} ON time at DC/DC startup. This bit is effective only when PONM = 1.
Bit 1: PUPT1	For the startup time, refer to table 4–21.
Bit 2: DUPF0	Sets the DC/DC operating frequency at DC/DC startup.
Bit 3: DUPF1	This bit is effective only when bit 5 (PONM) = 0 and bit 4 (PON) = 1 are set.
	<pre><dupf0 0,="" =="" dupf1="0">: fosc/8, <dupf0 1,="" =="" dupf1="0">: fosc/16</dupf0></dupf0></pre>
	<dupf0 0,="" =="" dupf1="1">: fosc/32, <dupf0 1,="" =="" dupf1="1">: fosc/64</dupf0></dupf0>
Bit 4: PON	Selects the operating frequency at VDC2, VDD2, VSS1, and VSS2 rise at startup. PONM = 0 is only valid.
	PON = 0: Normal operation
	PON = 1: Rising operation
Bit 5: PONM	Selects the DC/DC startup operation's internal sequence and external sequence.
	PONM = 0: External sequence
	PONM = 1: Internal sequence
Bit 6, bit7	Use prohibited

Table 4-21. DC/DC Rising Time Selection

PONM	PON	PUPT0	PUPT1	VDC2ON	RGONR	VS1/2ON	VD2ON	Remark
1	Х	0	0	16/fosc	2048/fosc	1.5 x 2048/fosc	2.5 x 2048/fosc	Use internal sequence
1	Х	1	0	16/fosc	256/fosc	1.5x 256/fosc	2.5x 256/fosc	Use internal sequence
1	Х	0	1	16/fosc	512/fosc	1.5 x 512/fosc	2.5 x 512/fosc	Use internal sequence
1	Х	1	1	16/fosc	1024/fosc	1.5 x 1024/fosc	2.5 x 1024/fosc	Use internal sequence
0	1	Х	Х	External input	External input	External input	External input	Use external sequence
0	0	Х	Х					Normal mode

Remark X: 0 or 1

4.2.21 Driver output related control signal registers (R36 to R47)

These registers set the start timing and the end timing of the active period of the RSW_O, GSW_O, BSW_O, EXT1_O to EXT3_O signals, with the clock obtained by dividing a 1-line horizontal period by 4 as the reference (reference clock of 60 clocks in the case of 1 line consisting of 240 pixels of data). The effective bits of these registers are bit 0 to bit 5, respectively. (Values up to 01H to 3BH can be set.)

4.2.22 EXT1 to EXT3 function setting register

EXT1_O outputs each line signal at the timing set with R42 and R43, but for EXTR2_O and EXT3_O, the output cycle can be selected depending on the positive polarity and negative polarity of the common. Table 4–22 shows the concrete details.

Moreover, the RSW_O, BSW_O, GSW_O inverted signals can be selected for EXT1_O to EXT3_O.

Table 4–22. EXT1 to EXT3 Function Setting Register (R48)

Bit Name	Mode
Bit 0	Sets the EXT2_O output during line inversion.
	Bit 0 = 0: Outputs every line
	Bit 0 = 1: Outputs only line when common is positive.
Bit 1	Sets the EXT2_O output during frame inversion.
	Bit 1 = 0: Outputs every line
	Bit 1 = 1: Outputs only the first display line for frames when the common is positive.
Bit 2	Sets the EXT3_O output during line inversion.
	Bit 2 = 0: Output every line
	Bit 2 = 1: Output only lines when the common is negative.
Bit 3	Sets the EXT3_O output during frame inversion.
	Bit 3 = 0: Output every line
	Bit 3 = 1: Outputs only the first display line for frames when the common is negative.
Bit 4 to bit 6	Use prohibited
Bit 7	Selects the mode for outputting the RSW_O, GSW_O, and BSW_O inverted signals from EXT1_O to EXT3_O.
	Bit 7 = 0: Executes the operation set to bit 0 to bit 3.
	Bit 7 = 1: Outputs the RSW_O, GSW_O, and BSW_O inverted signals from EXT1_O to EXT3_O.
	EXT1_O = /RSW_O, EXT2_O = /GSW_O, EXT3_O = /BSW_O

4.2.23 GOE1 signal setting registers (R49, R50)

These registers set the start timing (R49) and the end timing (R50) of the active period of the GOE1_O signal, with the clock obtained by dividing the 1-line horizontal period by 4 as the reference (reference clock of 60 clocks in the case of 1 line consisting of 240 pixels of data).

4.2.24 Dummy line setting register (R51)

This register is used to set whether to perform dummy output to the first line of a frame. In the case of a dummy line, the data input in the immediately preceding line is output. Refer to figure 4–11 and figure 4–12.

Table 4–23. Dummy Line Setting Register (R51)

Bit 0	Mode
0	Dummy line
1	No dummy line

Figure 4–11. Vertical Period GSTB (Top: No dummy line, bottom: Dummy line)

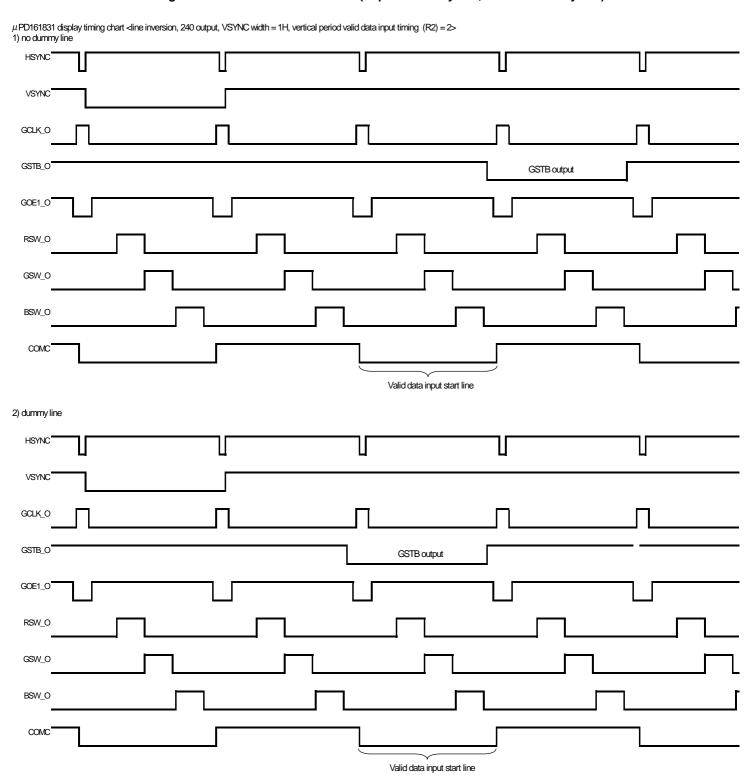
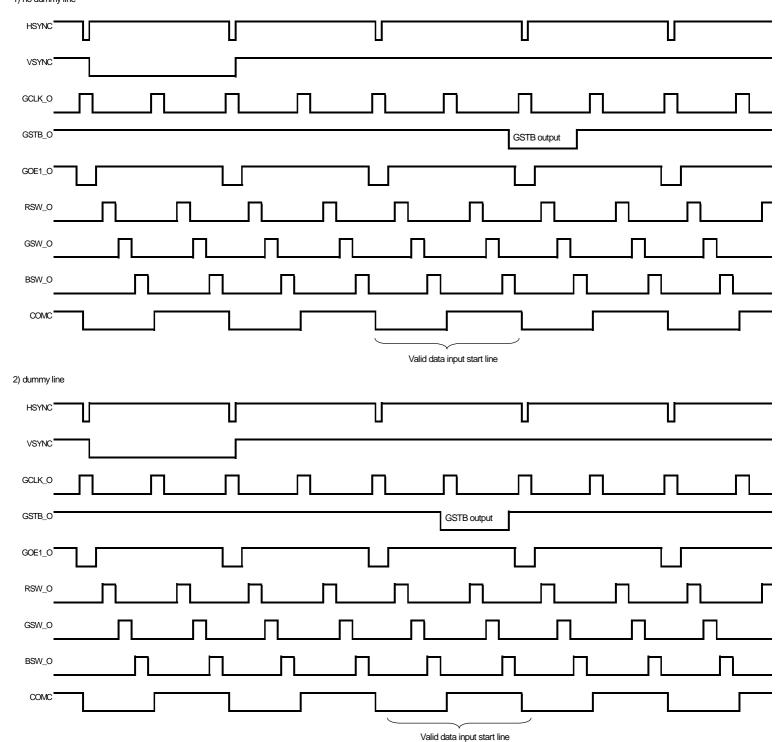



Figure 4–12. Vertical Period GSTB (Top: No dummy line, bottom: Dummy line)

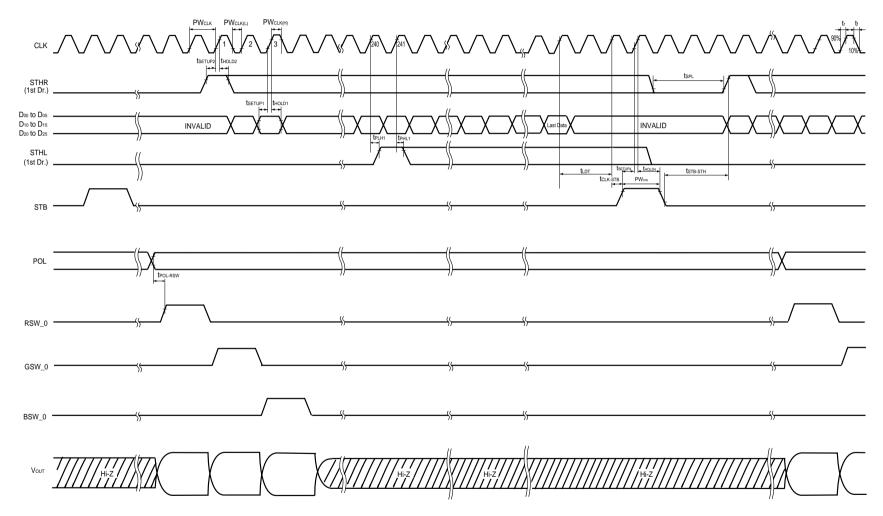
 μ PD161831 display timing chart line inversion, 240 output, quarter data function, VSYNC width = 1H, vertical period valid data input timing (R2) = 2> 1) no dummy line.

5. TIMING GENERATOR NON-USE FUNCTION

Operation using an external signal without using the on-chip timing generator function is possible by setting the TCON pin (TCON = H).

When the timing generator non-use function is selected, data input is performed using the following pins. The concrete timing chart is shown on the following.

- · DCK: Dot clock
- Doo to Do5, D10 to D15, D20 to D25: Data bus
- STHR, STHL: Data input start pulse
- STB: Data latch input
- AP: Amplifier drive period control
- POL: Polarity inversion signal


However, the serial interface can be used, and the common and power supply settings performed with the serial interface.

Moreover, when the timing generator non-use function is selected, instead of generating signals through the on-chip timing generator for GCLK_O, GSTB_O, GOE1_O, GOE2_O, RSW_O, GSW_O, BSW_O, and EXT1_O to EXT3_O signals, the signals input from the GCLK_I, GSTB_I, GOE1_I, GOE2_I, RSW_I, GSW_I, BSW_I, and EXT1_I to EXT3_I are output via a level shifter.

The signals input to RSW_I, GSW_I, and BSW_I are also used as the amplifier output timing.

The level shifter circuit block is divided into the gate control signal side and the driver output related signal side, and it is possible to individually select the negative voltage side voltage level individually from Vss2 and Vss3 at the gate control signal side and the driver output-related signal side. (Refer to 4.2.12 Common amplitude voltage adjustment D/A converter register.)

Figure 5-1. Data Input Timing Chart When Timing Generator Non-Use Function is Selected (R6, Bit 2 = H) (Unless otherwise specified, VIH = 0.7 VDD1, VIL = 0.3 VDD1)

6. INTERFACE

6.1 RGB Interface

The RGB interface has the following two modes:

- HSYNC, VSYNC mode

Each mode is explained below.

6.1.1 HSYNC, VSYNC mode

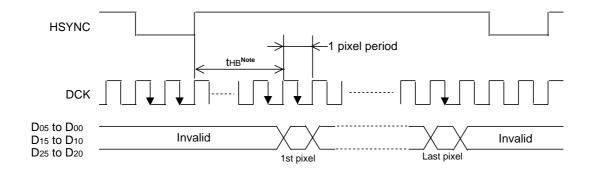

This mode is used to input display data from the DCK, HSYNC, VSYNC, Do5 to Do0, D15 to D10, and D25 to D20 pins. In this mode, the value set to the R3 register is valid as the number of valid data in the horizontal period. Figure 6-1 shows the timing chart.

Figure 6-1. Timing Chart in HSYNC, VSYNC Mode (When CKS = L, HSEG = L, VSES = L)

Input at least 1 dot clock for the front porch period.

VSYNC 1 line period

Dos to Doo Invalid D₁₅ to D₁₀ Invalid D₂₅ to D₂₀ 1st line Last line Dos to Doo D₁₅ to D₁₀ Invalid Invalid D₂₅ to D₂₀ 1st pixel 2nd pixel Last pixel

Note tvb = vertical back porch period the = horizontal back porch period

6.2 Serial Interface

The μ PD161831 uses an 8-bit serial interface to set registers related to the horizontal period and vertical period from the MCU, and control the timing of outputting strobe signals to the gate driver.

In addition, the back panel LCD controller driver can also be controlled.

6.2.1 Serial interface between MCU and μ PD161831

The serial interface between MCU and μ PD161831 can acknowledge serial data input (SI), serial clock input (SCLK), and serial data output (SO) if the chip select signal (LCDCS) is active (LCDS = H). This interface supports SPI, and its relationship with the valid edge of the serial clock and the active level of the serial clock can be set by using the SCLEG0 and SCLEG1 pins.

Pin Name Active Level of Serial Clock Input Timing of Serial Data Output Timing of Serial Data SCLEG1 SCLEG0 Low level Rising edge of serial clock Falling edge of serial clock Falling edge of serial clock Rising edge of serial clock ı Η Low level Η High level Falling edge of serial clock Rising edge of serial clock Н Н High level Rising edge of serial clock Falling edge of serial clock

Table 6-1. Relationship between Serial Clock and Data

Figure 6–2 shows the signal chart of the serial interface.

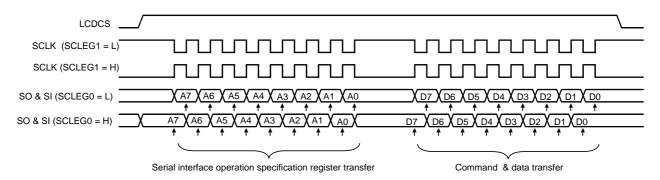


Figure 6-2. Serial Interface Signal Chart

Remarks 1. "\" indicates the timing of reading data.

- 2. If the chip is not active, the shift register and counter are reset to the default status.
- **3.** When wiring SCL, the influence of terminal reflection and external noise due to the wiring length must be taken into consideration. It is recommended to confirm the operation on the actual system.

Figures 6–3 and 6–4 show the relationship between the read/write operation and the SCLEG0 and SCLEG1 pins setting.

A read or write operation is specified by a command. When a read operation is specified by a command (A5 bit = 1), the 8-bit data transferred next is read. Figure 6–4 gives a specific example. Be aware that the SO pin becomes Hi-Z at all times other than when data is output.

Figure 6-3. Serial Interface Signal Chart (Write sequence)

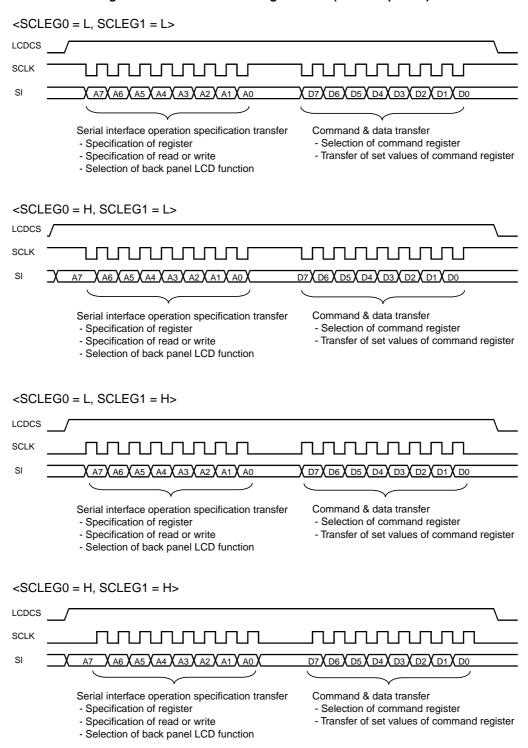
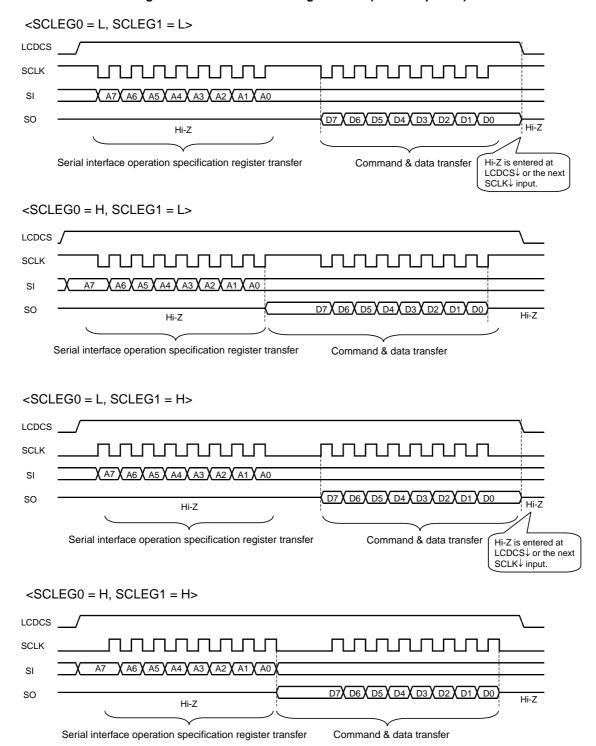
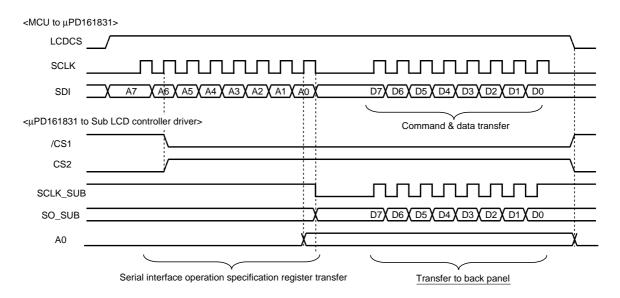



Figure 6-4. Serial Interface Signal Chart (Read Sequence)

6.2.2 Serial interface between μ PD161831 and back panel LCD Controller Driver

This 8-bit serial interface is used to control the back panel LCD.


When a function to transfer data to the back panel LCD is selected by a command (A6 bit = 1), the chip select signals (/CS1 and CS2) for the back panel LCD are asserted. When data is input from the SCLK and SI pins to transfer parameters and data, the polarity of the back panel LCD clock (SCLK_SUB) is the low level (high-level start) and data is output from the back panel serial data output line (SO_SUB) at the falling edge of the clock, regardless of the polarity and edge specification of the clock input to SCLK.

Bit A0 of the command can be used to specify the level to be output to the A0 pin. If "command specification" is specified by the A0 bit (A0 bit = 0), the A0 pin outputs a low level when the data of the parameter & data register is transferred. If "parameter setting" is specified by the A0 bit (A0 bit = 1), the A0 pin outputs a high level when the data of the parameter & data register is transferred.

This interface can be used even in the standby mode.

The transfer operation is illustrated below.

Figure 6-5. Serial Interface Signal Chart (Access to Back Panel LCD, SCLEG0 = SCLEG1 = H)

 μ PD161831

This interface is effective in the following cases:

- When an access to the back panel LCD controller driver is to be (or must be) made by the serial interface.
- If the specifications of the internal serial interface of the MCU in the set differ from the specifications of the back panel LCD controller driver.

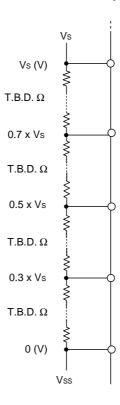
(Even if the serial interface of the MCU does not start when the serial clock is high, output data at the falling edge of the clock, and input data at the rising edge of the clock (frequently used specifications), the serial interface of the μ PD161831 supports SPI and any input).

Figure 6-6. Example Where Back Panel Serial Interface Is Necessary

An example where the back panel serial interface is necessary is given below.

<Relationship between clock and data of the back panel serial interface> Clock

Data Back panel LCD μPD161831 /CS /CS1, CS2 SO_SUB SI SCLK **SCLK** Serial interface This cannot be connected if specifications of serial interface differ. /CS MCU SCLK <Relationship between clock and data of serial interface in CPU> Clock Data


7. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE

The μ PD161831 includes a γ resistor for normally-black support. The relationship between the input data and the output voltage is shown in figure 7–2.

Any 3 major points V_1 - V_3 from the LCD panel γ -characteristics curve can be used as the external power supplies. The relation V_0 - V_4 external power supplies and γ correction resistance is shown in table 7–1, figure 7–1.

Pin Name	Voltage (V)	Resistance (Ω)
Vo	Vs	T.B.D.
V1	0.7 x Vs	T.B.D.
V2	0.5 x Vs	T.B.D.
V3	0.3 x Vs	T.B.D.
V4	0	T.B.D.

Figure 7–1. Relationship between External Power Supplies and γ Correction Resistance

External power supply pins V₀-V₄ can be customized at any place of the γ correction voltage. The string resistance between Vss-Vs that generates the γ correction voltage is divided by 250, from which the desired voltage can be selected and the γ correction voltage can be customized. In addition, positive or negative polarity can also be selected for each γ correction voltage.

Table 7–2. Relationship between Input Data and Output Voltage Value T.B.D.

Figure 7–2. Relationship between Positive/Negative Polarity and Data Output

T.B.D.

8. CONNECTION OF γ CORRECTION RESISTOR TO POWER SUPPLY AND GND PINS

Connection of the γ correction resistors of the μ PD161831, γ correction resistor power supplies (V₀-V₄) is shown below.

Depending on the setting of the GAM pin, the maximum and minimum potential of the γ correction resistors can be changed between Vs-Vss and Vo-V4.

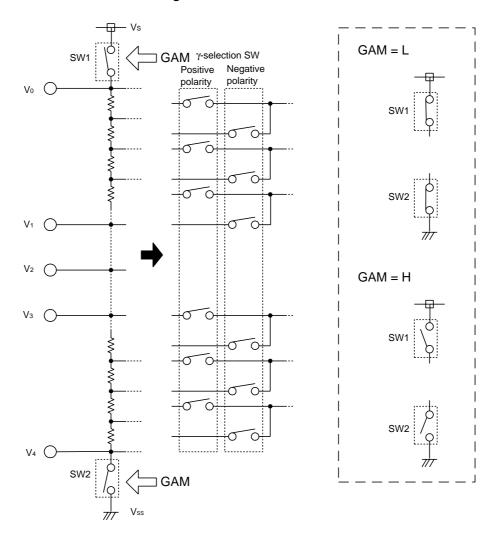


Figure 8-1. GAM Pin Function

9. γ -CORRECTION POWER SUPPLY CONNECTION EXAMPLE

The μ PD161831 enables customization of the γ -correction power supply on both the positive and negative polarity sides (For details, refer to **7. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE**).

Consequently, a γ -correction power supply does not have to be input externally when a single source-driver chip is being used in the panel.

Single chip <Example 1 (GAM = L)> Vo V1 V2 V3 V4 μPD161831 <Example 2 (GAM = H)> External power supply input Vo V1 V2 V3 V4 μPD161831 Multiple chip <Example 1 (GAM = L)> Vn - Vn short Vo V1 V2 V3 V4 μPD161831 μPD161831 <Example 2 (GAM = H)> External power supply input $V_0\ V_1\ V_2\ V_3\ V_4$ Vo V1 V2 V3 V4 μPD161831 μPD161831

Figure 9–1. γ -Correction Power-Supply Connection Example

10. RESET

The μ PD161831 can be reset by hardware (/RESET pin) or a command (R15 register).

A hardware reset resets all the functions, including the registers except serial interface. A command reset initializes only the registers. Be sure to execute a hardware reset and command reset immediately after power application. Each reset is explained below.

10.1 Hardware Reset

When a hardware reset is input (/RESET = L), reset is performed for the registers listed in table 4–2 and the on-chip hardware function. (Initialization of the serial interface counter is performed from LCDCS.) Therefore, even when the timing generator non-use mode is selected, be sure to input a hardware reset.

While the hardware reset signal is being input (/RESET = $L \rightarrow H$) and during the period of "VSYNC x 20" after bit 0 of the R24 register has been set to 1 (DCON = 1) after the reset was cleared, all the gate outputs are set to OFF, and the charge on the TFT panel pixels is decreased to 0.

Figure 10-1 shows the timing between when the hardware reset signal is input and when display output is produced.

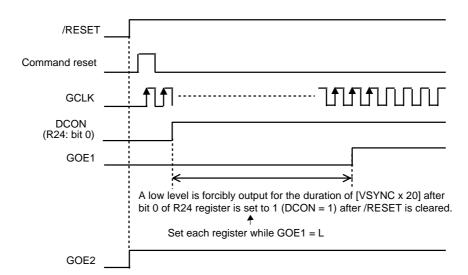


Figure 10-1. From Input of Hardware Reset to Display Output

When bit 4 of the R4 register = 0, GOE1 output continues to be low level even after the "VSYNC x 20" period has elapsed after bit 0 of the R24 register is set to 1 (DCON =1).

Moreover, if bit 4 of the R4 register is set to "1" before the "VSYNC x 20" period elapses after bit 0 of the R24 register has been set to (DCON = 1), low output is performed from the GOE1 pin until the "VSYNC x 20" time has elapsed.

10.2 Command Reset

A command reset (R15 register) only initializes the registers.

11. GOE1 AND GOE2 SIGNALS

The output of the GOE1 and GOE2 signals changes according to the setting of the DCON signal and the input of /RESET and standby.

-GOE1: After DCON is set to 1 (bit 0 of R24 register is set to 1), the GOE1 signal outputs a low level for a period of "VSYNC x 20", and output of all the gates is switched off.

(All gates are off at power application.)

-GOE2: In standby mode, when DCON = 0, GOE2 outputs a low level and output of all the gates is switched on. (In standby mode, the charge of the panel is discharged.)

Refer to figure 11-1 below for details.

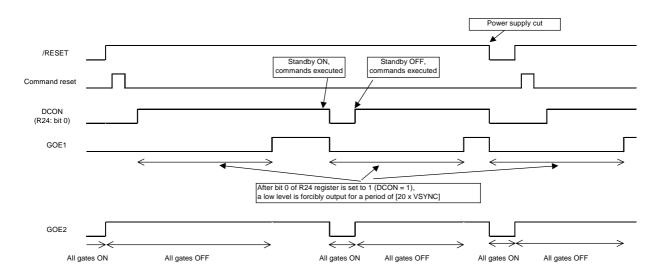


Figure 11-1. GOE1 and GOE2 Signal Output

Regarding the GOE1 signal, the above-described function does not work when the timing generator function is not used, and output enable/disable for the GOE1 signal following reset release can be controlled only with the R6 register.

12. POWER SUPPLY ON/OFF SEQUENCE

T.B.D.

13. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings (Vss1 = Vss2 = 0 V)

Parameter	Symbol	Rating	Unit
Logic part supply voltage	Vcc	-0.3 to +4.5	V
Driver part supply voltage	Vs	-0.3 to +6.0	V
Input voltage	Vı	−0.3 to Vcc + 0.3	V
Output voltage	Vo	−0.3 to Vcc + 0.3	٧
Operating ambient temperature	TA	-40 to +85	°C
Storage temperature	T _{stg}	-55 to +125	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Recommended Operating Range ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, $V_{SS} = 0 \text{ V}$)

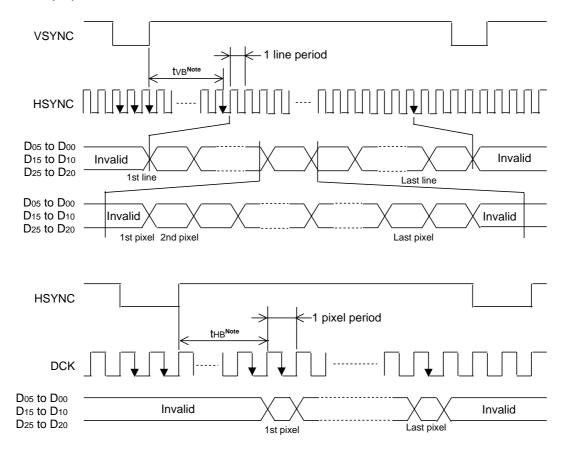
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Logic part supply voltage	Vcc		2.2		3.6	V
Driver part supply voltage	Vs		4.5	5.0	5.5	V
Booster reference power supply	V _{DC}		2.5		3.6	V
High-level input voltage	VIH		0.7 Vcc		Vcc	V
Low-Level input voltage	VIL		0		0.3 Vcc	V
γ-corrected voltage	V ₀ -V ₄		Vss		Vs	V
Clock frequency	fclk	Vcc = 2.5 to 5.5 V			20	MHz
		Vcc = 2.2 to 5.5 V			16	MHz

\star Electrical Characteristics (T_A = -40 to +85°C, Vcc = 2.2 to 3.6 V, Vs = 5.0 V \pm 0.5 V, Vss = 0 V)

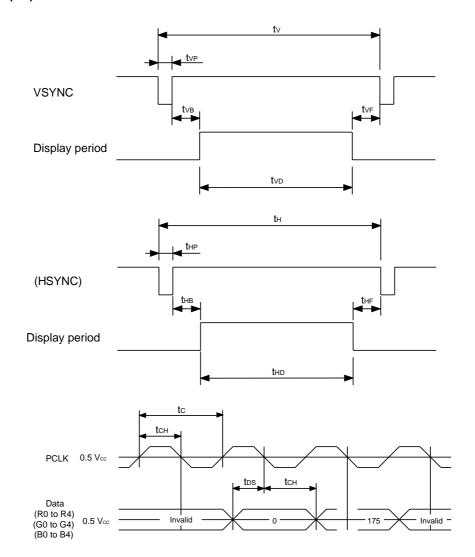
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Input leak current	Іін				1.0	μΑ
	lı∟	Except TESTIN1, TESTIN2	-1.0			μΑ
Input current	I _{IH2}	TESTIN1, TESTIN2		1.5	5.0	μΑ
High-level output voltage	Vон	Except COMC, IoH = -0.1 mA	Vcc - 0.5			V
Low-level output voltage	Vol	Except COMC, IoL = +0.1 mA			0.5	V
High-level output voltage	V _{OH2}	COMC, Iон = -1.0 mA	T.B.D.			V
Low-level output voltage	V _{OL2}	COMC, IoL =+1.0 mA			T.B.D.	V
γ -correction power-supply	lγ	V ₀ = 5.0 V, V ₄ = 0 V (GAM = L)	115	230	460	μΑ
static current consumption						
Driver output current	Ivon1	Vs = 5.0 V, Vout = Vx - 1.0 V Note1		T.B.D.	T.B.D.	mA
(Amp. drive)		Input data: 1FH				
	Ivol1	Vs = 5.0 V, Vout = Vx + 1.0 V Note1	T.B.D.	T.B.D.		mA
		Input data: 20H				
Driver output voltage	Vонз	$Vs = 5.0 \text{ V}, \text{ Io} = -100 \ \mu\text{A}$	T.B.D.			V
(8-color display mode)	V _{OL3}	$Vs = 5.0 \text{ V}, \text{ Io} = +100 \ \mu\text{A}$			T.B.D.	V
Output voltage deviation	ΔVο			±10	±20	mV
Output voltage range	Vo	RGB data: 00H to 3FH	Vss+ 0.05		Vs-0.05	V
COMDC output impedance	Rcompc	$Io = -40 \mu A$			T.B.D.	Ω
V _{REF} input voltage range	VREFIN					V
V _{DD1} boost voltage	V _{DD1}	$I_{DD1} = +300 \ \mu A$	1.7 Vs		2.0 Vs	V
V _{DC2} boost voltage 1	V _{DC2}	V _{DC2} = L (x2 boost), I _{DC} = +1.0 mA	1.9 V _{DC}		2.0 VDC	V
V _{DC2} boost voltage 2	V _{DC2}	V _{DC2} = L (x3 boost), I _{DC} = +1.0 mA	2.8 VDC		3.0 VDC	V
Vss2 boost voltage	Vss2	Iss2 = $-300 \mu A$	-1.0 Vs		-0.8 Vs	V
Vss3 boost voltage	Vss3	Iss3 = $-300 \mu A$	-3.0 Vs		-2.7 Vs	V
V _{DD1} output resistance	RV _{DD1}	$I_{DD1} = +300 \ \mu A$	1.5	3.0	5.0	kΩ
V _{DC2} output resistance 1	RV _{DC21}	V _{DC2} = L (x2 boost), I _{DC} = +1.0 mA	50	100	200	Ω
V _{DC2} output resistance 2	RV _{DC22}	V _{DC2} = L (x3 boost), I _{DC} = +1.0 mA	100	200	400	Ω
Vss2 output resistance	RVss2	Iss2 = $-300 \mu A$	1	2	3	kΩ
Vssa output resistance	RVss3	Iss3 = $-300 \mu A$	1.5	3.0	5.0	kΩ
Vs output voltage	Vs	No load	4.5	5.0	5.5	V
V _R output voltage	VR	No load	4.5	5.0	5.5	V
Vs output resistance	RVs	V _{DC2} = 6.0 V, Is = +1.0 mA, Vs = 5.0 V		30	60	Ω
V _R output resistance	RVR	$V_{DC2} = 6.0 \text{ V}, \text{ IR} = +1.0 \text{ mA}, \text{ Vs} = 5.0 \text{ V}$		T.B.D.	T.B.D.	Ω
Logic part static current	Icc1	No load, standby mode			10	μΑ
consumption		-				
Logic part dynamic current	Icc2	No load Note2		0.6	0.9	mA
consumption						
Driver part static current	I _{DC1}	No load, V _{DC} = 2.8 V, standby mode		T.B.D.	T.B.D.	μΑ
consumption						
Driver part dynamic current	I _{DC2}	No load, $V_{DC} = 2.8 \text{ V}$, $V_S = 5.0 \text{ V}$ Note2		2.6	T.B.D.	mA
consumption		No load, $V_{DC} = 2.8 \text{ V}$, $V_S = 5.0 \text{ V}^{\text{Note2}}$,		1.3	T.B.D.	mA
		8-color mode				

Notes 1. Vx refers to the output voltage of analog output pins S_1 to S_{240} .

Vout refers to the voltage applied to analog output pins S₁ to S₂₄₀.


2. fcLK = 15 MHz, STB cycle = 52 μ s, AP pulse width (each multiplexer switch amplifier driving time) = 10 μ s, BA = L (low power mode)

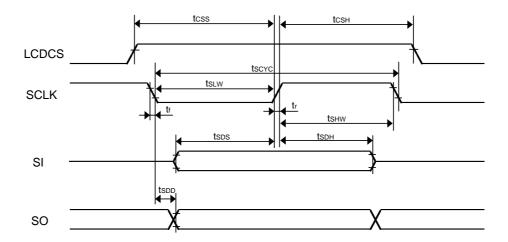
Switching Characteristics (TA = -40 to $+85^{\circ}$ C, Vcc = 2.2 to 3.6 V, Vs = 5.0 V \pm 0.5 V, Vss = 0 V)


Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Start pulse delay time	t PLH1	C _L = 15 pF			30	ns
Driver output delay time	t PLH2H	C _L = 30 pF, AP↑→Vо∪т −100 mV,			12	μs
(High power mode, with load)	t PHL2H	or Voυτ+100 mV			12	μs
Driver output delay time	t PLH2L	C _L = 30 pF, AP↑→Vо∪т –100 mV,			15	μs
(Low power mode, with load)	t PHL2L	or Voυτ+100 mV			15	μs
High capacitance	Cıı	V ₀ -V ₄ , T _A = 25°C		5	15	pF
	C ₁₂	Except for Vo-V4,TA = 25°C		10	15	pF
DC/DC oscillation frequency	fococ	FS0 = FS1 = H	10	15	20	kHz
DCCLK input frequency	fdcclk			15	50	kHz

RGB interface (1/2)

Note tVB = vertical back porch period tHB = horizontal back porch period

RGB interface (2/2)



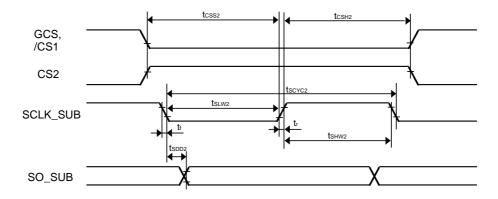
TA = -40 to +85°C, Vcc = 2.2 to 3.6 V, Vs = 5.0 V \pm 0.5 V, Vss = 0 V

	Name		Symbol	MIN.	TYP.	MAX.	Unit	Remark
Clock	Frequency	Vcc ≥ 2.5 V	1/tc	T.B.D.	5.0	10.0	MHz	200 ns (TYP.)
		Vcc ≥ 2.2 V	1/tc	T.B.D.	5.0	8.0	MHz	200 ns (TYP.)
	Duty		tcH/tc	T.B.D.	0.5	0.6	-	_
	Rise/Fall		tcrf	_	_	T.B.D.	ns	_
Horizontal signal	Cycle		tн	_	50.51	-	μs	19.8 kHz (TYP.)
				_	252	_	CLK	
	Display period	l	thd		240		CLK	_
	Front porch		thf	1.0	3.0	_	CLK	-
	Pulse width		thp	2.0	5.0	_	CLK	_
	Back porch		tнв	2.0	4.0	_	CLK	_
	tнр + tнв (Quar	tнр + tнв (Quarter data function not used)			T.B.D.	T.B.D.	CLK	_
	tнр + tнв (Quar	ter data functior	used)	10.0	T.B.D.	T.B.D.	CLK	_
	HSYNC setup	time	tuss	T.B.D.	_	-	ns	_
	HSYNC hold t	ime	tнsн	T.B.D.	_	-	ns	_
Vertical signal	Cycle		tv	_	16.67	_	ms	60.0 Hz (TYP.)
				T.B.D.	330	T.B.D.	Н	
	Front porch		tvF	1.0	2.0	_	Н	-
	Pulse width		tvp	1.0	5.0	-	Н	_
	Back porch		tvв	1.0	3.0	-	Н	_
	tvf + tvp + tvb			4.0	10.0	-	Н	_
	VSYNC setup	time	tvss	T.B.D.	_	-	ns	_
	VSYNC hold t	ime	tvsн	T.B.D.	_	-	ns	_
Data	Clock – data t	iming	tон	T.B.D.	_	-	ns	_
	Data – clock ti	ming	tos	T.B.D.	_	_	ns	_

Serial Interface

• Serial interface between MCU and μ PD161831 (when SCLEG0 = SCLEG1 = H)

 $T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vcc} = 2.2 \text{ to } 3.6 \text{ V}, \text{ Vs} = 5.0 \text{ V} \pm 0.5 \text{ V}, \text{ Vss} = 0 \text{ V}$


Parameter	Symbol	Condition	MIN.	TYP. Note	MAX.	Unit
Serial clock cycle	tscyc		150			ns
SCLK_SUB high-level pulse width	tsнw		60			ns
SCLK_SUB low-level pulse width	tslw		60			ns
Data setup time	tsps		60			ns
Data hold time	tspн		60			ns
CS – SCL time	tcss		90			ns
	tсsн		90			ns
SCLK↓ →SO output delay time	tsdd	_	T.B.D.			ns

Note TYP. values are reference values when $T_A = 25^{\circ}C$.

Remarks 1. The input signal's rise/fall times (tr and tr) are rated as 15 ns or less.

2. All timing is rated based on 20 to 80% of Vcc.

ullet Serial interface between μ PD161831 and back panel

 $T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vcc} = 2.2 \text{ to } 3.6 \text{ V}, \text{ Vs} = 5.0 \text{ V} \pm 0.5 \text{ V}, \text{ Vss} = 0 \text{ V}$

Parameter	Symbol	Condition	MIN.	TYP. Note	MAX.	Unit
Serial clock cycle	tscyc2		T.B.D.			ns
SCLK_SUB high-level pulse width	tshw2		T.B.D.			ns
SCLK_SUB low-level pulse width	tsLW2		T.B.D.			ns
CS - SCLK_SUB time	tcss2		T.B.D.			ns
	tcsH2		T.B.D.			ns
SCLK_SUB↓ →SO_SUB output	tsdd2		T.B.D.			ns
delay time						

Note TYP. values are reference values when $T_A = 25$ °C.

Remarks 1. The input signal's rise/fall times (t_r and t_f) are rated as 15 ns or less.

2. All timing is rated based on 20 to 80% of Vcc.

Timing Requirements When not Using Timing Generator

T.B.D.

Timing Requirements (T_A = -40 to +85°C, Vcc = 2.2 to 3.6 V, Vss = 0 V, t_r = t_f = 10 ns)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Clock pulse width	PWclk		100			ns
Clock pulse high time	PW _{CLK(H)}		30			ns
Clock pulse low time	PW _{CLK(L)}		30			ns
Data setup time	tsetup1		20			ns
Data hold time	t HOLD1		20			ns
Start pulse setup time	tsetup2		20			ns
Start pulse hold time	t HOLD2		20			ns
Start pulse low time	t spl		3			CLK
Last data timing	t ldt		2			CLK
CLK - STB time	tclk-stb	CLK↑ →STB↑	20			ns
STB pulse width	PWstb		40			ns
Start pulse rising time	t sтв-sтн	STB↑ →STH↑	3			CLK
STB setup time	t SETUP4		20			ns
STB hold time	t HOLD4		20			ns
POL – RSW_O↑ time	tpol-rsw		T.B.D.			ns
AP pulse width (High power mode)	PWAPH		T.B.D.			μs
AP pulse width (Low power mode)	PWAPL	STB cycle = 40 μ s, C _L = 30 pF	T.B.D.			μs

[MEMO]

[MEMO]

[MEMO]

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

3 STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Reference Documents

NEC Semiconductor Device Reliability/Quality Control System (C10983E)
Quality Grades On NEC Semiconductor Devices (C11531E)

- The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
 - "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.